
## **Good Identification Practices**

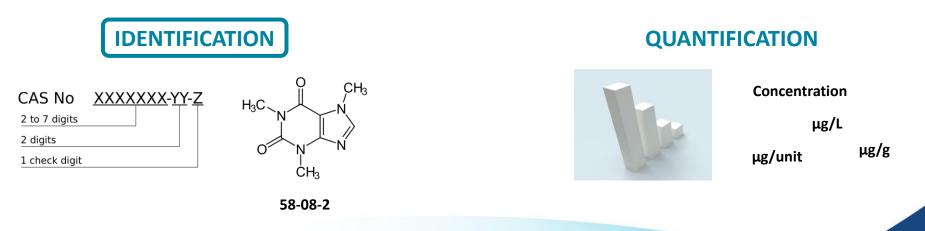
STRUCTURE IS KEY FOR TOXICOLOGICAL RISK ASSESSMENT

26 APRIL 2023







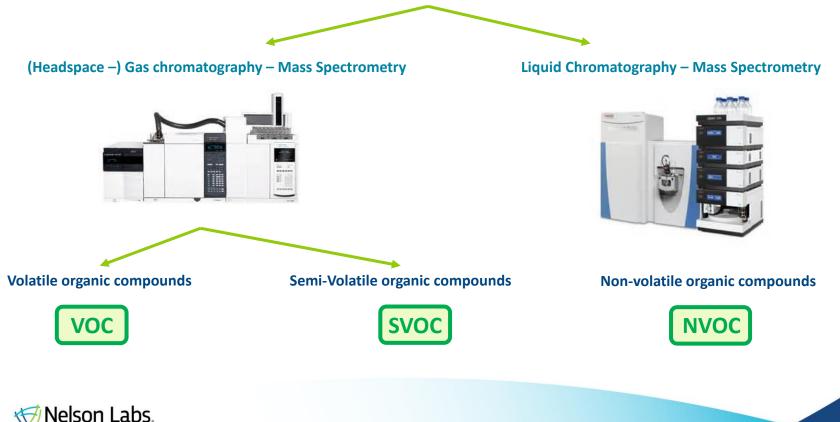



## **Screening | Discovery | Non-targeted analysis**

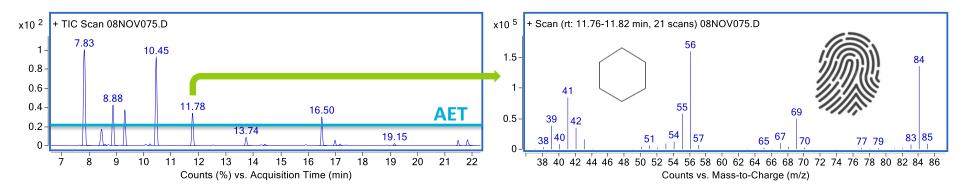
## **DIFFERENT ANALYTICAL TECHNIQUES**











## **Screening | Analytical techniques**

A Sotera Health company

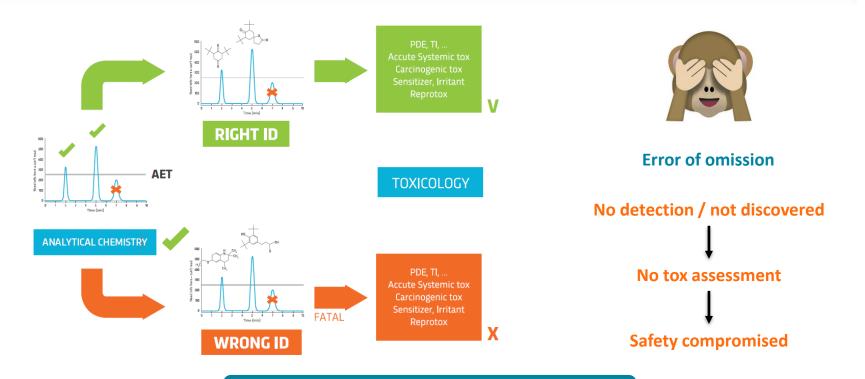
### **CHROMATOGRAPHY – MASS SPECTROMETRY**



## **CHROMATOGRAPHY – MASS SPECTROMETRY**



## Chromatogram

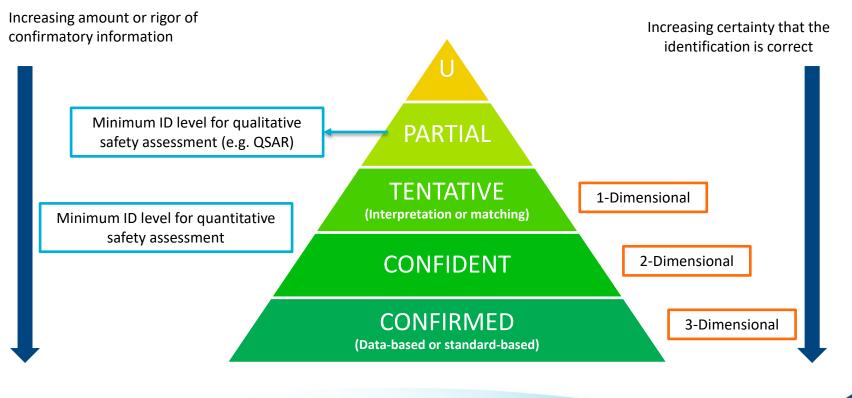

- Analytical output from chromatography system
- o Detector signal intensity in function of analysis time
- o Compound separation
- $\circ$  Retention time  $\rightarrow$  discriminator for identification
- Peak area  $\rightarrow$  measure of **quantity**

### **Mass spectrum**

- Analytical output from mass spectrometer
- Compound detection, but does more!
- Mass (fragment) information for each peak in chromatogram
- Very powerful tool for identification

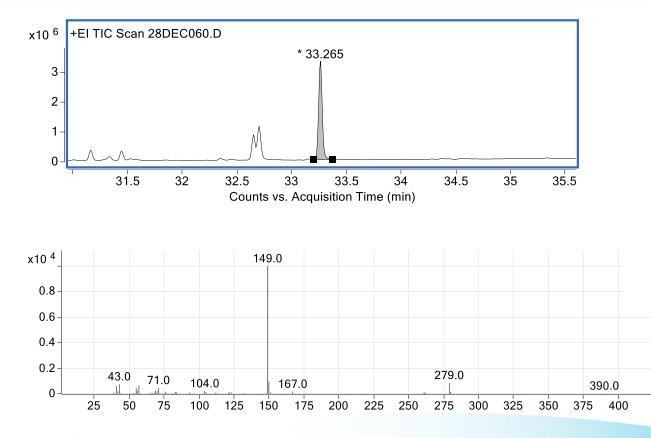


## Screening | Identification | Importance of correct identification




**GOOD IDENTIFICATION PRACTICES ARE KEY!** 

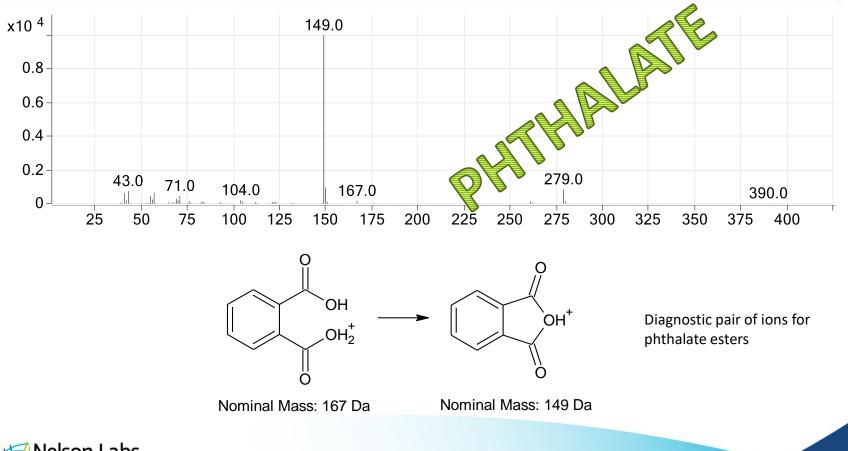



## Identification | Identification levels

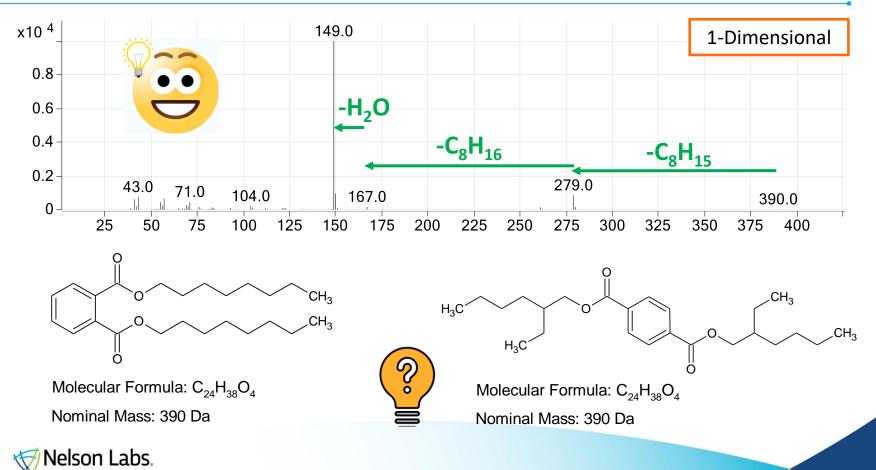
References: USP 1663 | Nelson Labs e-Book Good Identification Practices





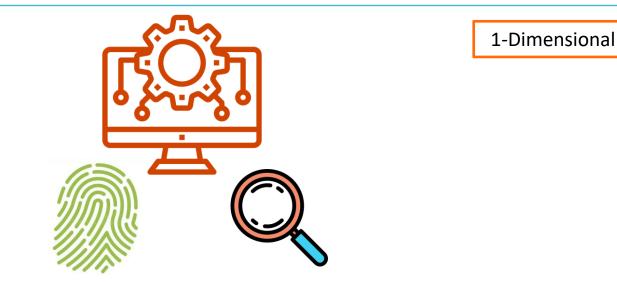

## Identification | Identification levels | Unidentified compound








## Identification | Identification levels | Partial Identification




## Identification | Identification levels | Tentative ID - Interpretation



A Sotera Health company

## Identification | Identification levels | Tentative ID – Matching (1)





> 300 000 GC/MS spectra

# WILEY

> 840 000 GC/MS spectra

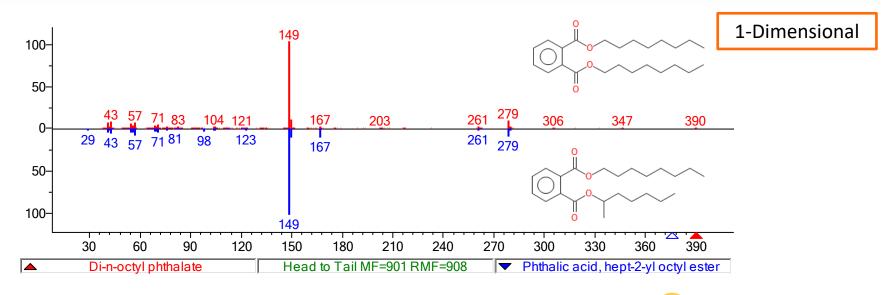


## Identification | Identification levels | Tentative ID – Matching (2)

| #          | Lib.       | Match | R.Match | Prob. (%) | Name                                               | ^  |
|------------|------------|-------|---------|-----------|----------------------------------------------------|----|
| 1          | М          | 901   | 908     | 9.03      | Phthalic acid, hept-2-yl octyl ester               |    |
| <b>⊕</b> 2 | М          | 901   | 901     | 9.03      | Di-n-octyl phthalate                               |    |
| 3          | М          | 899   | 906     | 8.33      | Phthalic acid, hept-3-yl octyl ester               |    |
| 4          | М          | 897   | 906     | 7.68      | Phthalic acid, 5-methylhex-2-yl octyl ester        |    |
| 5          | М          | 896   | 899     | 7.38      | 1,2-Benzenedicarboxylic acid, isodecyl octyl ester |    |
| 6          | М          | 893   | 907     | 6.52      | Phthalic acid, hept-4-yl octyl ester               |    |
| <          |            |       |         |           | ~ ^                                                |    |
| Names      | Structures |       |         |           | InLib = -134, Hit Li                               | st |

1-Dimensional

| Ranking                     |  |  |  |  |
|-----------------------------|--|--|--|--|
| Match Factor                |  |  |  |  |
| <b>Reverse Match Factor</b> |  |  |  |  |
| Probability (%)             |  |  |  |  |
| InLib score                 |  |  |  |  |


- $\rightarrow$  how good is the fit of the unknown spectrum with the reference spectrum?
- $\rightarrow$  how good is the fit of the reference spectrum with the unknown spectrum?
- $\rightarrow$  is that the probability that the ID is correct?
- $\rightarrow$  the probability that the compound is actually in the searched library. Wait a minute...

#### When do we have a "good match"?

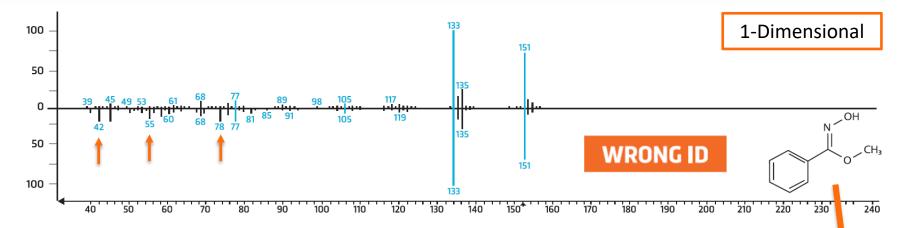
Can I always safely report the top hit from the NIST/Wiley database?



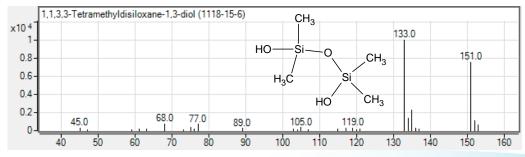
## Identification | Identification levels | Tentative ID – Matching (3)



The top hit is a wrong identification! Even with a (reversed) match factor > 900 !!


A GC/MS spectrum (EI) does not always show the molecular ion  $\rightarrow$  key piece of info missing!

There can be many similar spectra in an extremely large database *increased risk of false positive hits* 


00



## Identification | Identification levels | Tentative ID – Matching (4)



#### **Correct ID in Nelson Labs database:**









## Identification | Identification levels | Tentative ID – Matching (5)

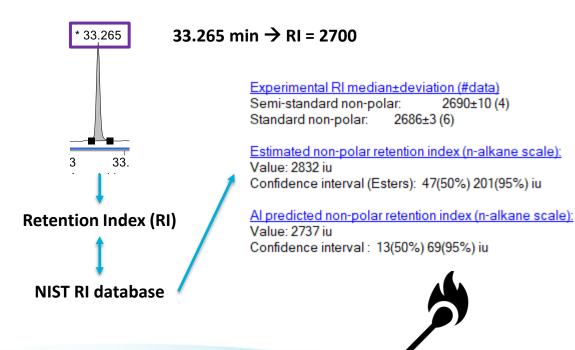
Small differences, big consequences

1-Dimensional

## Careful review by mass spectrometrist strongly recommended








## Identification | Identification levels | Confident ID (1)

How to add a second dimension to upgrade the ID level?

2-Dimensional



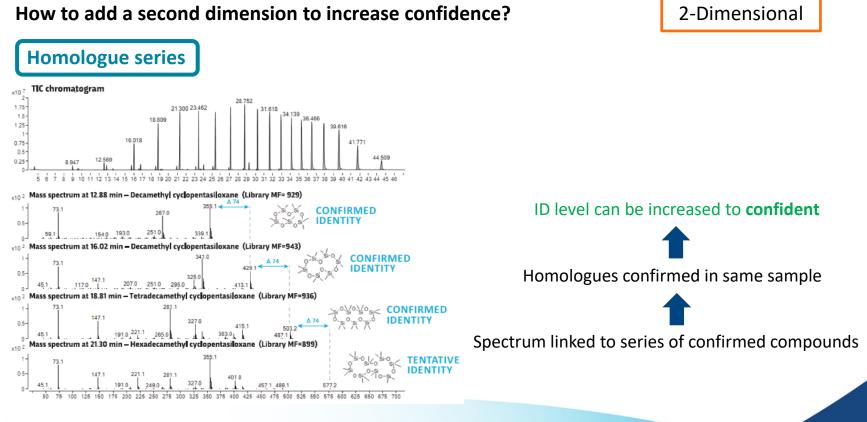




## Identification | Identification levels | Confident ID (2)

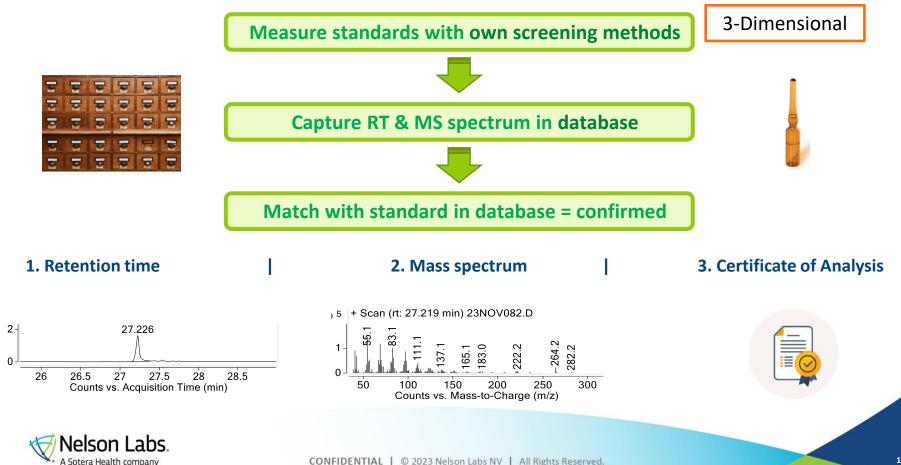
How to add a second dimension to increase confidence?

| Ingredients                                                                                                 | (                                            | Concentrations (phr)                                                                                                               |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| PVC<br>Organotin stabilizer<br>PE wax<br>Ester lubricant<br>Stearic acid<br>CaCO <sub>3</sub><br>ACR<br>DOP | Composition of the materials of construction | $     \begin{array}{c}       100 \\       2 \\       1 \\       3 \\       0.3 \\       14 \\       7 \\       2     \end{array} $ |


ACR, acrylic resin; DOP, dioctyl phthalate; PE, polyethylene; phr, parts by weight per hundred parts of resin; PVC, poly(vinyl chloride).

Wang et al.; Journal of Vinyl and Additive Technology, 22 (3), 2014




2-Dimensional

## Identification | Identification levels | Confident ID (3)





## Identification | Identification levels | Confirmed ID – Standard based



## Identification | Identification levels | Confirmed ID – Data-based

#### Alternative pathways allowed

- 1. Spectral Matching 2. Retention Index 3. Material composition
- 1. Interpretation

**2. NMR** 

3. Provable relation to confirmed compound

...





What about LC/MS?

Same principles! But identification flow can be somewhat different from GC/MS

- LC/MS spectra less universal → Less commercial LC/MS libraries (but they are evolving!)
- Use of high-resolution accurate mass (HRAM) instrumentation for screening
   → extra dimension for identification
- Use of data-dependent tandem MS → "on the fly" collection of MS/MS data of compounds
   → MS/MS spectrum can be used as extra dimension for identification



## Identification | Home-court advantage of in-house LC/MS database

#### **NO DATABASE**

#### Hexane extract of a PU component

|                                                                          | ID    | ORGANIC  | CAS-No./ | EI      | t <sub>R</sub> | Result   |
|--------------------------------------------------------------------------|-------|----------|----------|---------|----------------|----------|
| no.                                                                      | Level | COMPOUND | ToxID    | (m/z)   | (min)          | (µg/cm²) |
| POSITIVE IONIZATION MODE (APCI+)                                         |       |          |          |         |                |          |
| 1                                                                        | U     | -        | -        | 173.080 | 3.50           | 0.17     |
| 2                                                                        | U     | -        | -        | 251.211 | 7.17           | 0.15     |
| 3                                                                        | U     | -        | -        | 219.185 | 7.55           | 0.49     |
| 4                                                                        | U     | -        | -        | 145.122 | 8.02           | 0.16     |
| 5                                                                        | U     | -        | -        | 353.242 | 7.72-<br>8.32  | 1.5      |
| 6                                                                        | U     | -        | -        | 145.122 | 8.18           | 0.31     |
| 7                                                                        | U     | -        | -        | 145.122 | 8.33           | 0.25     |
| 8                                                                        | U     | -        | -        | 145.122 | 8.69           | 0.12     |
| 9                                                                        | U     | -        | -        | 145.122 | 9.19           | 0.16     |
| 10                                                                       | U     | -        | -        | 527.298 | 9.41           | 0.12     |
| 11                                                                       | U     | -        | -        | 145.122 | 9.47           | 0.10     |
| 12                                                                       | U     | -        | -        | 338.340 | 9.71           | 0.14     |
| 13                                                                       | U     | -        | -        | 731.412 | 10.87          | 170      |
| 14                                                                       | U     | -        | -        | 559.517 | 11.11          | 0.15     |
| 15                                                                       | U     | -        | -        | 585.533 | 11.39          | 0.23     |
| 16                                                                       | U     | -        | -        | 535.518 | 11.47          | 0.51     |
| ID LEVEL: 1 = Confirmed; 2 = Confident; 3 = Tentative , 4 = Partial, U = |       |          |          |         |                |          |
| unknown                                                                  |       |          |          |         |                |          |

#### WITH DATABASE

Hevane extract of a PLL component

| Hexane extract of a PO component |                                  |                                       |                   |             |                         |                    |  |  |  |
|----------------------------------|----------------------------------|---------------------------------------|-------------------|-------------|-------------------------|--------------------|--|--|--|
| no.                              | ID<br>Level                      | ORGANIC COMPOUND                      | CAS-No./<br>ToxID | El<br>(m/z) | t <sub>R</sub><br>(min) | Result<br>(µg/cm²) |  |  |  |
|                                  | POSITIVE IONIZATION MODE (APCI+) |                                       |                   |             |                         |                    |  |  |  |
| 1                                | 1                                | 1,4,7-Trioxacyclotridecane-8,13-dione | 6607-34-7         | 173.080     | 3.50                    | 0.17               |  |  |  |
| 2                                | U                                | -                                     | -                 | 251.211     | 7.17                    | 0.15               |  |  |  |
| 3                                | U                                | -                                     | -                 | 219.185     | 7.55                    | 0.49               |  |  |  |
| 4                                | 1                                | 35-Crown-7                            | 66055-34-3        | 145.122     | 8.02                    | 0.16               |  |  |  |
| 5                                | 3                                | Hump of butoxylated hydrogenated MDI  | -                 | 353.242     | 7.72-<br>8.32           | 1.5                |  |  |  |
| 6                                | 2                                | 40-Crown-8                            | ToxID 6005        | 145.122     | 8.18                    | 0.31               |  |  |  |
| 7                                | 2                                | 45-Crown-9                            | ToxID 6006        | 145.122     | 8.33                    | 0.25               |  |  |  |
| 8                                | 2                                | 50-Crown-10                           | ToxID 6007        | 145.122     | 8.69                    | 0.12               |  |  |  |
| 9                                | 2                                | 55-Crown-11                           | ToxID 6008        | 145.122     | 9.19                    | 0.16               |  |  |  |
| 10                               | 3                                | Irganox 1010 degradation product      | ToxID 5005        | 527.298     | 9.41                    | 0.12               |  |  |  |
| 11                               | 2                                | 60-Crown-12                           | ToxID 6009        | 145.122     | 9.47                    | 0.10               |  |  |  |
| 12                               | 1                                | Erucamide                             | 112.84-5          | 338.340     | 9.71                    | 0.14               |  |  |  |
| 13                               | 1                                | Irganox 1010                          | 6683-19-8         | 731.412     | 10.87                   | 170                |  |  |  |
| 14                               | U                                |                                       | -                 | 559.517     | 11.11                   | 0.15               |  |  |  |
| 15                               | 2                                | Ethylene bis(linoleamide)             | 14614-46-1        | 585.533     | 11.39                   | 0.23               |  |  |  |
| 16                               | 2                                | N,N'-Ethylene myristyl oleyl diamide  | ToxID 5888        | 535.518     | 11.47                   | 0.51               |  |  |  |

ID LEVEL: 1 = Confirmed; 2 = Confident; 3 = Tentative , 4 = Partial, U = unknown

#### Without database, data interpretation is huge effort to identify compounds and/or increase the ID level

Matching with in-house LC/MS database is fast and effective road to many confirmed ID's



#### SECOND PASS IDENTIFICATION | STRUCTURE ELUCIDATION

## High-end Mass Spectrometry



- Unidentified / Partially identified compounds > AET in 1<sup>st</sup> pass screening
  - Unidentified compounds  $\rightarrow$  considered carcinogenic/mutagenic
  - To allow de-risking by tox assessment, a structure is required!
- Request to further increase ID level (e.g. low margin of safety)
  - Tentative to Confident
  - Confident to Confirmed
- Goal of second pass studies: generate / collect supporting data (analytical and other) to increase the identification level



## Second pass identification | Instrumentation



#### Liquid Chromatography

- Orbitrap
- FT-Ion Cyclotron Resonance

#### Requirements

- High-end mass spectrometers
- (Very) high resolution
- High mass accuracy
- Multiple ionization methods
- Tandem mass spectrometry

#### **Gas Chromatography**

- Q-TOF
- Orbitrap





## **Second pass identification | High Resolution Accurate Mass**

| Element      | Nominal Mass | Exact Mass |
|--------------|--------------|------------|
| Hydrogen (H) | 1            | 1.0078     |
| Carbon (C)   | 12           | 12.0000    |
| Nitrogen (N) | 14           | 14.0031    |
| Oxygen (O)   | 16           | 15.9949    |



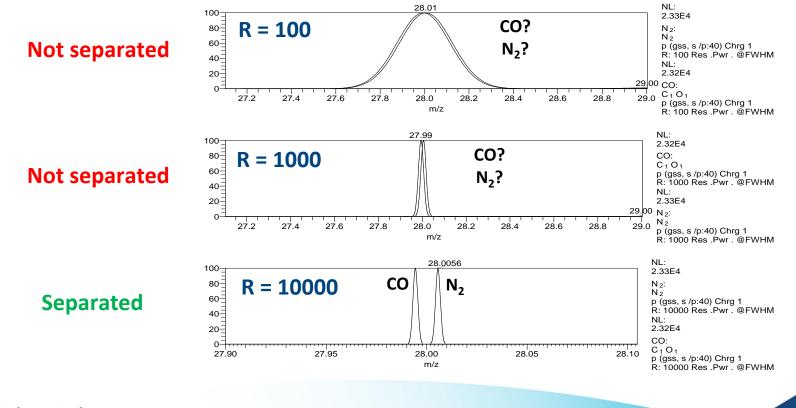
Nitrogen gas: N<sub>2</sub>

Nominal mass: 28 Da

Exact mass: 28.0062 Da

?

Carbon monoxide: CO

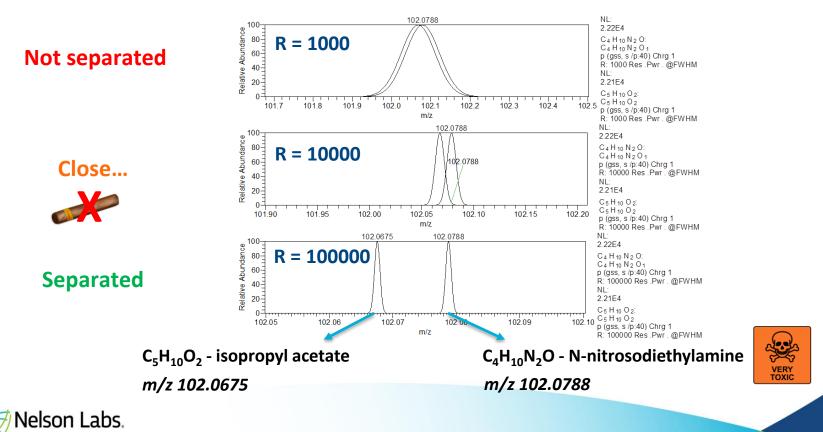

Nominal mass: 28 Da Exact mass: 27.9949 Da







## Second pass identification | High Resolution Accurate Mass






## Second pass identification | High Resolution Accurate Mass

E&L example: 2 compounds both with nominal mass 102

A Sotera Health company



## Key take aways concerning HRAM MS:

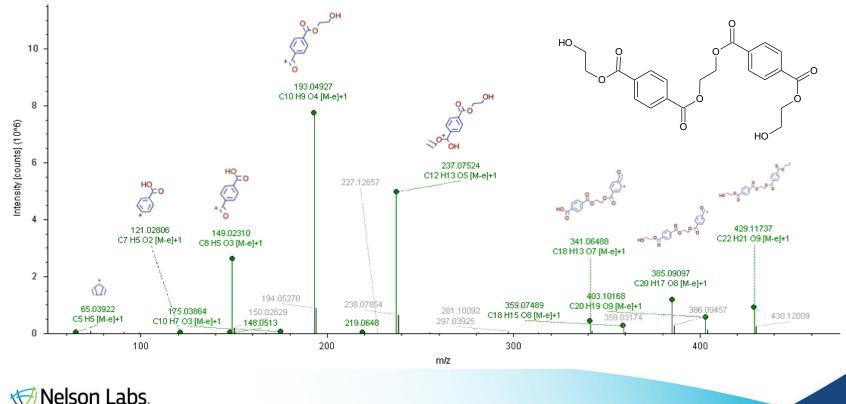
accurate mass alone does not deliver a structure...

... but delivers the **elemental formula** of the molecule and fragments of the molecule

high resolution does not deliver a structure...

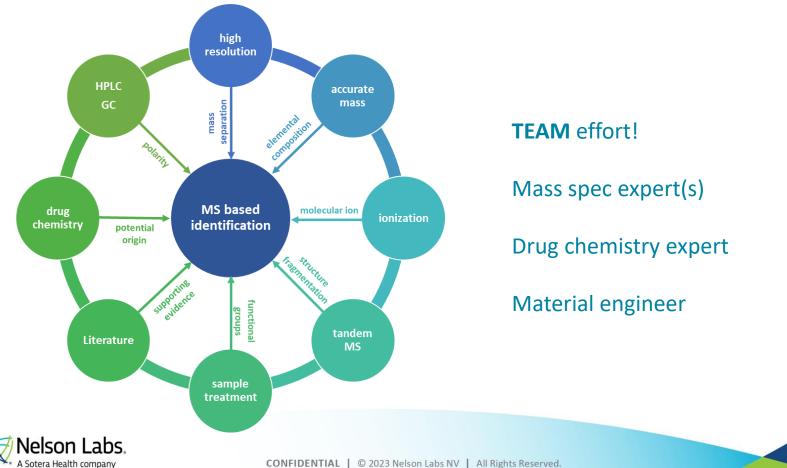
... but enables to **separate molecules** with the same nominal mass but different elemental formulas

...but assists in confirming the elemental formula using isotope matching


It delivers key pieces of the puzzle for structure elucidation






## Second pass identification – Tandem Mass Spectrometry

#### Case: "de novo" structure elucidation of PET related oligomer using MS/MS spectrum



• A Sotera Health company

## The beautiful art of structure elucidation



#### PRACTICE

Use complementary analytical techniques

Report appropriate identification levels

Review database hits obtained by matching

Collect supporting information

Develop and maintain in-house database

#### REASON

Reduces risk of omission

Toxicologist defines MoS based on ID level

Mitigates risk of reporting wrong ID

Extra dimension(s) to increase ID level

Most efficient path to confirmed ID's
 Mitigates risk of reporting wrong ID





Safety



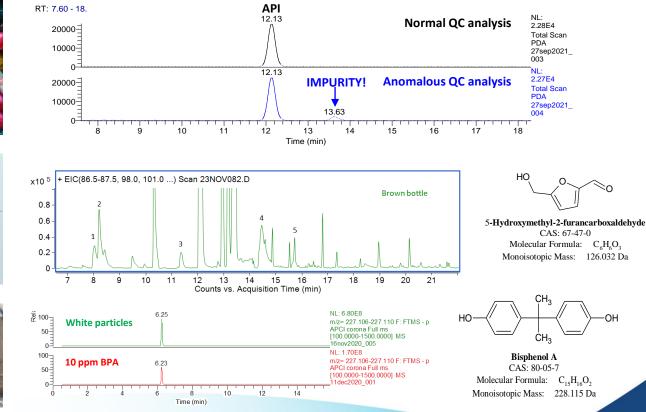




## **Other structure elucidation projects**





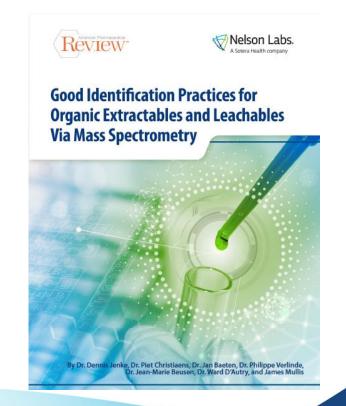







Nelson Labs.

A Sotera Health company




#### **E-Book Good Identification Practices:**

https://www.nelsonlabs.com/good-identification-practicesfor-organic-extractables-and-leachables-via-massspectrometry/

## PDA article series about identification and mitigating errors in screening for E&L:

- PDA Journal of Pharmaceutical Science and Technology January 2020, 74 (1) 90-107
- PDA Journal of Pharmaceutical Science and Technology January 2020, 74 (1) 108-133
- PDA Journal of Pharmaceutical Science and Technology January 2020, 74 (1) 134-146





# Thank you

# **Questions?**

## InfoEurope@nelsonlabs.com +32 16 40 04 84





Register for **FREE** access

for this presentation and much more expert content on

## Soterahealth.com/academy





## Safeguarding Global Health®



Expert Lab Testing & Advisory Services

nelsonlabs.com sales@nelsonlabs.com +1 801-232-6293



Comprehensive Sterilization Solutions & Expert Advisory Services

sterigenics.com +1 800-472-4508



Reliable Global Supply of Cobalt-60

nordion.com service@nordion.com +1 800-465-3666

