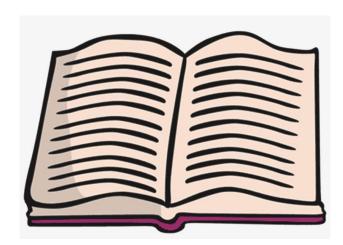


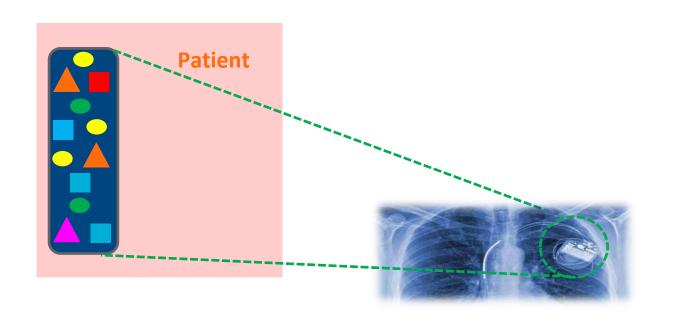
Input

Output

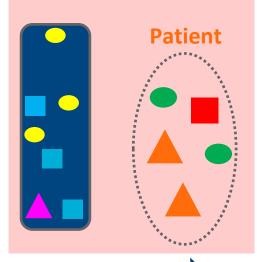
STUDY R	EPORT TEXXXXXX
Sponsor	
Contact	
Address	
Quotation No.	
Sponsor Reference	
Date of Sample Receipt	
Date of Technical Initiation	
Date of Technical Completion	
Date of Report	
EXTRACTABLES STU PROLONGED EXPO	DY ON A MEDICAL DEVICE OF SURE BASED ON ISO 10993-18
PROLONGED EXPO	DY ON A MEDICAL DEVICE OF SURE BASED ON ISO 10993-18
PROLONGED EXPO	DY ON A MEDICAL DEVICE OF SURE BASED ON ISO 10993-18

ISO 10993-18

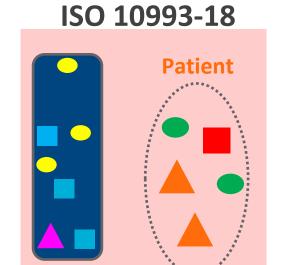

Introduction to Extractables and Leachables testing for medical devices From device to chromatogram


E&L testing according **ISO** 10993-18 needed

ISO 10993-1


Extractables & Leachables testing – What?

Extractables & Leachables testing – What?


ISO 10993-18

Which compounds are migrating?

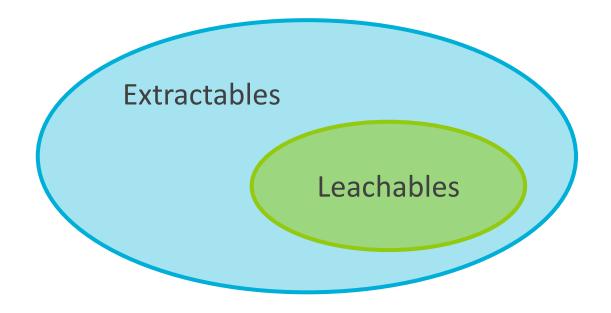
Extractables & Leachables testing – What?

Extractables testing

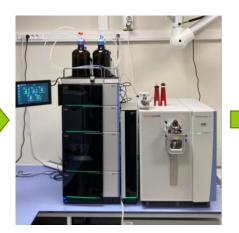
→ What CAN come out of the material?

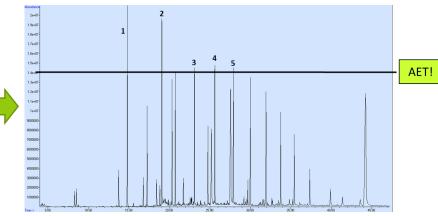
Extractables testing

Leachables testing



→ What CAN come out of the material? → What DOES come out from the material in the patient?





Sample Preparation

- 1. Test item
- 2. Extraction solvents
- 3. Extraction ratio
- 4. Extraction conditions

1. Test item

• Finished medical device

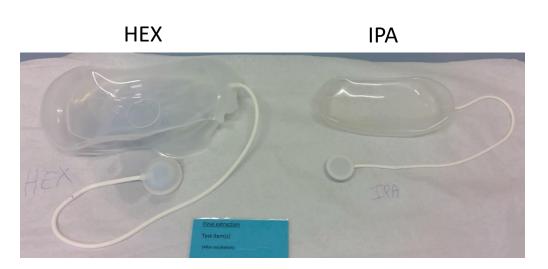
1. Test item

- Finished medical device
- Only patient contacting parts (direct, indirect)

 $\begin{array}{c} \textbf{Table D.1 -- Parameters of solvents commonly used for extraction of polymeric medical} \\ \textbf{devices/materials} \end{array}$

	Solventa	Polarity index ^[50]	Boiling point (°C)b 100		
Polar	Water ^c	10,2			
	Dimethyl sulfoxide	7,2	189		
	Acetonitrile		82		
Semi Polar	Methanol	5,1	65		
	Acetone 5,1		56		
	Ethanol ^d	Ethanol ^d 4,3			
	Tetrahydrofuran	4,0	65		
	n-Propyl alcohol	4,0	97		
	i-Propyl alcohol	3,9	82		
	Dichloromethane	3,1	41		
	Toluene	2,4	111		
Nam Dalam	Cyclohexane		81		
Non-Polar	Heptane	0,1e	98		
	n-Hexane	0,1	69		

Source: ISO 10993-18 (2020)


- Consider the use
 - Interactions with specific solutions / drug products?
 - Indirect patient contact?

Avoid solvents that cause swelling and/or degradation

3. Extraction ratio

3. Extraction ratio

Table 1 — Standard surface areas and extract liquid volumes

Thickness ^a mm	Extraction ratio (surface area or mass/volume) ±10 %	Examples of forms of materials	
<0,5	6 cm ² /ml	film, sheet, tubing wall	
0,5 to 1,0	3 cm ² /ml	tubing wall, slab, small moulded items	
>1,0	3 cm ² /ml	larger moulded items	
irregularly shaped solid devices	0,2 g/ml	powder, pellets, foam, non-absorbent moulded items, porous high-density materials	
irregularly shaped porous devices (low-density materials)	0,1 g/ml	membranes, textiles	

Source: ISO 10993-12 (2021)

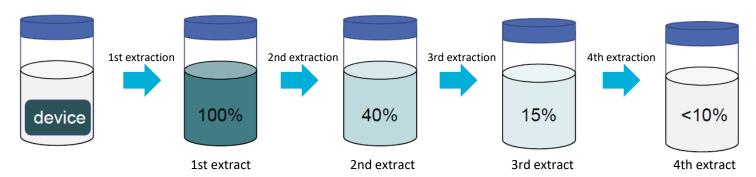
4. Extraction conditions

4. Extraction conditions

Table 2 — Recommended extraction conditions

Contact category	Recommended extraction conditions	Credible alternatives
Limited contact devices	Simulated use conditions ^a	Exaggerated conditions
Prolonged contact devices	Exhaustive conditions	Exaggerated conditions ^{b,c}
Long-term contact devices	Exhaustive conditions	Exaggerated conditions ^{b,c,d}

Source: ISO 10993-18 (2020)



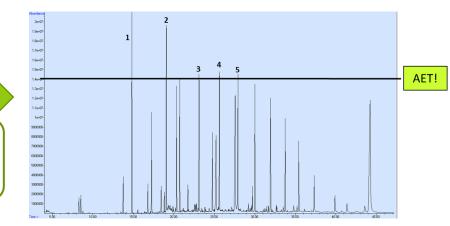
4. Extraction conditions

Table 2 — Recommended extraction conditions

Contact category	Recommended extraction conditions	Credible alternatives
Limited contact devices	Simulated use conditions ^a	Exaggerated conditions
Prolonged contact devices	Exhaustive conditions	Exaggerated conditions ^{b,c}
Long-term contact devices	Exhaustive conditions	Exaggerated conditions ^{b,c,d}

Source: ISO 10993-18 (2020)





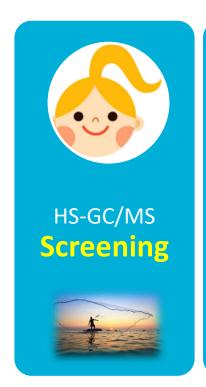
Analysis

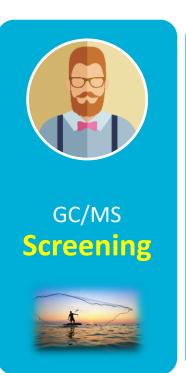
- 1. Techniques
- 2. Evaluation threshold

1. Analytical techniques

Volatile Organic Compounds (VOCs)

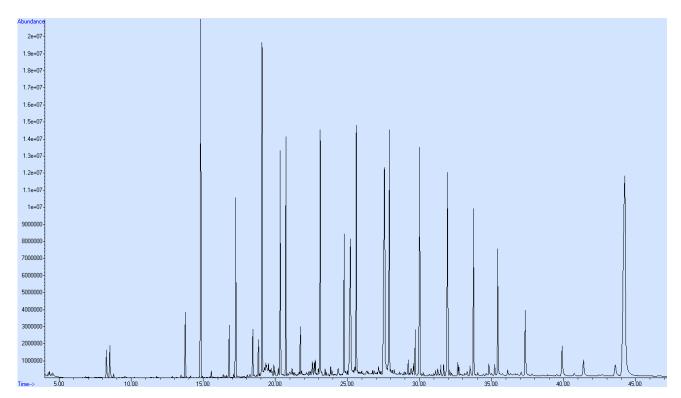
Semi-Volatile Organic Compounds (SVOCs)


Non-Volatile Organic Compounds (NVOCs)

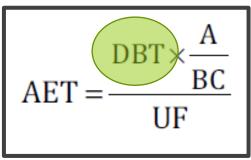


Elements

1. Analytical techniques

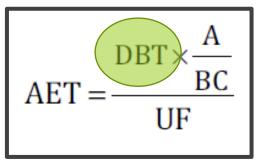


1. Analytical techniques


"Threshold below which the analyst need not identify or quantify leachables or extractables or report them for potential toxicological assessment"

$$AET = \frac{DBT \times \frac{A}{BC}}{UF}$$

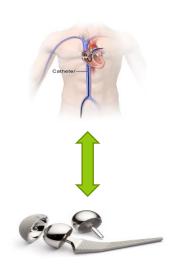
Source: ISO 10993-18 (2020)


Source: ISO 10993-18 (2020)

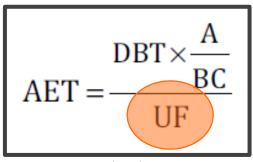
Dose Based Threshold

Threshold of Toxicological Concern (µg/day)

Dose Based Threshold


Threshold of Toxicological Concern (µg/day)

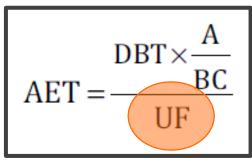
Source: ISO 10993-18 (2020)


Table 1 — Recommended ICH M7(R1) (2017) TTC values based on ISO 10993-1 medical device contact category

Medical device contact category	Limited (<24 h)	Prolonged (24 h to 30 d)	Long-term ^a (>30 d)		
Duration of body contact	≤ 1	month	> 1 month to 12 months	> 1 year to 10 years	> 10 years to lifetime
Daily intake ($\mu g/d$) of any one constituent		120	20	10	1,5b

a Long-term includes devices commonly described as permanent contacting (see ISO 10993-1).

The 1,5 μg/d value is based on 10⁻⁵ cancer risk and 60 kg (adult) body weight[6][17].



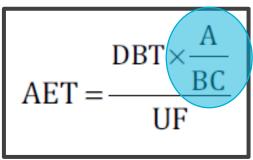
Source: ISO 10993-18 (2020)

Uncertainty Factor

to account for the analytical uncertainty of the screening methods used to estimate extractables' concentrations in an extract

Source: ISO 10993-18 (2020)

$UF = \frac{1}{(1 - RSD)}$


Uncertainty Factor

to account for the analytical uncertainty of the screening methods used to estimate extractables' concentrations in an extract

Table 1: Overview of the statistical evaluation of the RRF values for GC/MS and LC/MS (APCI and ESI)

Technique/ Method	Nelson Labs SOP	N° of RRF Entries	Average RRF	Standard Deviation	RSD	Uncertainty Factor (UF)
GC/MS	SOP0487 SOP0245	2194	0.61	0.30	0.49	2
LC/MS (APCI)	SOP0264	652	0.84	0.67	0.80	5
LC/MS (ESI)	SOP0268	201	1.04	0.79	0.76	(4) =>5

Source: ISO 10993-18 (2020)

A: # devices used to generate the extract

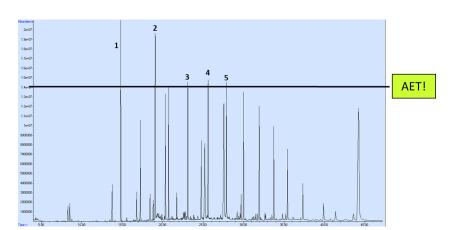
B: Volume of the extract (mL)

C: Clinical exposure (# devices/day)



$$AET = \frac{DBT \times \frac{A}{BC}}{UF}$$

Source: ISO 10993-18 (2020)


- Long-term contacting device (> 10 years)
- 1 device (A) extracted in 50 mL (B)
- Clinical exposure (C) = 2 devices / day
- UF = 2

AET
$$\left(\frac{\mu g}{mL}\right) = \frac{1.5 \frac{\mu g}{day} \times \frac{1 \text{ device}}{50 \text{ mL} \times 2 \text{ devices/day}}}{2} = 0.0075$$

Identification

Quantification

Sample Preparation

- Crucial first step!
- Think before you start!
 - Are you testing what you need to test?
 - Are the chosen extraction conditions justifiable?

Analysis

Screen broad at the right limit!

Register for FREE access

for this presentation and much more expert content on

Soterahealth.com/academy

Safeguarding Global Health®

Expert Lab Testing & Advisory Services

nelsonlabs.com sales@nelsonlabs.com

Comprehensive Sterilization Solutions & Expert Advisory Services

sterigenics.com

Reliable Global Supply of Cobalt-60

nordion.com service@nordion.com

