

Analytical techniques for E&L studies

IDENTIFICATION | QUANTIFICATION | STRUCTURAL ELUCIDATION

31 March 2022

Intro - The broad spectrum of extractables and leachables

Intro - The broad spectrum of extractables and leachables

DIFFERENT FISHING TECHNIQUES

DIFFERENT ANALYTICAL TECHNIQUES

IDENTIFICATION

QUANTIFICATION

CAS No	<u> </u>	<u>XXX-Y</u>	<u>Y-</u> Z
2 to 7 digits			
2 digits			
1 check digit			

Concentration

µg/unit

µg/L

µg/g

THE MOST IMPORTANT & MOST UNDERESTIMATED ACTIVITY IN THE LAB

- \circ Have very experienced people in sample preparation team
- \circ Very intensive training for new staff in sample prep team
- \circ QC on solvents used select batches of clean solvents with suppliers
- \circ QC on extraction equipment
- \odot Separate glassware
- \circ Precleaning of glassware validation of cleaning procedures
- \circ Sampling of test articles how to handle test articles?
- \circ **UPW sample prep** should be **separated** from solvent sample prep
- o Correction for absorbed solvents?
- \circ How to concentrate extracts while avoiding cross contaminations
- \circ Storage of extracts under controlled conditions
- \circ Holding times of extracts
- \circ Selection of type of containers for storage of extracts
- \circ How to keep DEHP out of the Lab!

The quality of an analysis largely depends on the quality of the prep

CHROMATOGRAPHY – MASS SPECTROMETRY

Chromatogram

- o Analytical output from chromatography system
- Detector signal intensity in function of analysis time
- Compound separation
- \circ Retention time \rightarrow depends on compound properties
- Peak area \rightarrow measure of **quantity**

Mass spectrum

- Analytical output from mass spectrometer
- Compound detection, but does more!
- Mass (fragment) information for each peak in chromatogram
- Very powerful tool for identification

Analytical techniques – Organic compounds – Volatility & Polarity

CHROMATOGRAPHY – MASS SPECTROMETRY

Volatile organic compounds (VOC)

Monomer residues Solvent residues from production steps Residues from polymer treatments Small polymer degradation products

Semi-Volatile organic compounds (SVOC)

Lubricants Plasticizers Antioxidants Polymer degradation products High boiling solvents Non-volatile organic compounds (NVOC) Fillers Plasticizers Antioxidants Anti-slip agents Oligomers

Analytical techniques – Organic compounds – Analytical purpose

CHROMATOGRAPHY – MASS SPECTROMETRY

Screening method

Untargeted Focus on **identification** Estimated / semi-quantitative Extractables / Screening leachables Reporting limit ~ AET

Validated method

Targeted

Focus on quantification

Quantitative

Validated leachables studies

INDUCTIVELY COUPLED PLASMA / OPTICAL EMISSION SPECTROSCOPY or MASS SPECTROMETRY

Origin of elements

- Metals from glass
- Metals from rubbers
- Catalysts, used during polymerization process
- Fillers, added to polymer materials
- Acid scavengers
- Activators for rubber polymerization

Technique

- ICP to produce excited atoms
- Excited atoms recombine, giving off electromagnetic radiation at
- wavelengths characteristic for each element
- Emission wavelengths detected by the spectrophotometer
- Or ions detected by mass spectrometry
- Intensity correlates to concentration → quantitative technique

ION CHROMATOGRAPHY

Origin of anions

- Polyolefins: formate / acetate as oxidation products
- Halobutyl rubbers: bromide, chloride, fluoride
- Fluoropolymers: fluoride
- Trace impurities: nitrite, nitrate, phosphate, sulfate

Example: UPW extract of a halobutyl rubber

Technique

- Special liquid chromatography technique
- Designed for separation and detection of ions
- <u>Detection</u>: conducitivy or

amperometry

Analytical techniques – Identification (screening) – Identification levels

References: USP 1663 | Nelson Labs e-Book Good Identification Practices

Nelson Labs. A Sotera Health company

Analytical techniques – Identification (screening) – Confirmed ID level

Analytical techniques – Identification (screening) – Confirmed ID level

- GC/MS spectra are 'standardized' \rightarrow universal libraries possible (NIST, Wiley, EPA...) ٠
- LC/MS spectra depend on vendor, instrument settings... \rightarrow no universal libraries •
 - → the internal database is the only database!

NO DATABASE

Hexane extract of a PU component

no.	U	ORGANIC	CAS-NO./	EI	τ _R	Result
	Level	COMPOUND	ToxID	(m/z)	(min)	(µg/cm²)
POSITIVE IONIZATION MODE (APCI+)						
1	U	-	-	173.080	3.50	0.17
2	U	-	-	251.211	7.17	0.15
3	U	-	-	219.185	7.55	0.49
4	U	-	-	145.122	8.02	0.16
5				252 242	7.72-	15
5	0	-	-	535.242	8.32	1.5
6	U	-	-	145.122	8.18	0.31
7	U	-	-	145.122	8.33	0.25
8	U	-	-	145.122	8.69	0.12
9	U	-	-	145.122	9.19	0.16
10	U	-	-	527.298	9.41	0.12
11	U	-	-	145.122	9.47	0.10
12	U	-	-	338.340	9.71	0.14
13	U	-	-	731.412	10.87	170
14	U	-	-	559.517	11.11	0.15
15	U	-	-	585.533	11.39	0.23
16	U	-	-	535.518	11.47	0.51
ID LEVEL: 1 = Confirmed; 2 = Confident; 3 = Tentative , 4 = Partial, U =						
under aussi						

unknown

WITH DATABASE

Hexane extract of a PU component						
о.	ID Level	ORGANIC COMPOUND	CAS-No./ ToxID	El (m/z)	t _R (min)	Result (µg/cm²)
		POSITIVE IONIZATION MO	DE (APCI+)			
1	1	1,4,7-Trioxacyclotridecane-8,13-dione	6607-34-7	173.080	3.50	0.17
2	U	-	-	251.211	7.17	0.15
3	U	-	-	219.185	7.55	0.49
4	1	35-Crown-7	66055-34-3	145.122	8.02	0.16
5	3	Hump of butoxylated hydrogenated MDI	-	353.242	7.72- 8.32	1.5
6	2	40-Crown-8	ToxID 6005	145.122	8.18	0.31
7	2	45-Crown-9	ToxID 6006	145.122	8.33	0.25
8	2	50-Crown-10	ToxID 6007	145.122	8.69	0.12
9	2	55-Crown-11	ToxID 6008	145.122	9.19	0.16
LO	3	Irganox 1010 degradation product	ToxID 5005	527.298	9.41	0.12
L1	2	60-Crown-12	ToxID 6009	145.122	9.47	0.10
12	1	Erucamide	112.84-5	338.340	9.71	0.14
13	1	Irganox 1010	6683-19-8	731.412	10.87	170
L4	U		-	559.517	11.11	0.15
15	2	Ethylene bis(linoleamide)	14614-46-1	585.533	11.39	0.23
L6	2	N,N'-Ethylene myristyl oleyl diamide	ToxID 5888	535.518	11.47	0.51

ID LEVEL: 1 = Confirmed; 2 = Confident; 3 = Tentative, 4 = Partial, U = unknown

The "Home Court" Advantage

Analytical techniques – Identification (screening) – Tentative ID level

Commonly achieved through computerized database matching algorithms (e.g. NIST, Wiley...)

Never trust the algorithm!

Every 'hit' to be carefully evaluated by a trained mass spectrometrist:

- Visual inspection
- Match factors
- Probability
- "InLibrary" score

604

679

0.40

5 M

Benzo[b]dihydropyran, 6-hydroxy-4,4,5,7,8-pentamethyl-

Analytical techniques – Identification (screening) – Confident ID level

- Additional evidence for tentative identification
 - **Molecular weight** confirmation (chemical ionization, *vide infra*)
 - Elemental formula confirmation (accurate mass, vide infra)
 - Confirmed identification in orthogonal technique
 - Material/processing knowledge (e.g. expected anti-oxidant degradation after gamma-sterilization)
 - Homologue series with provable relationship to confirmed compound
 - Compound within expected retention index window (based on experimental RI data from same GC column phase in NIST)

Analytical techniques – Identification (screening) – Errors

GOOD IDENTIFICATION PRACTICES ARE KEY!

Analytical techniques – Quantification - Screening

Screening is untargeted \rightarrow no prior knowledge about extractables / leachables profile

In case many extractables reported \rightarrow accurate quantification for all is not practically feasible

Estimated quantification

- Internal standard (I.S.) compound spiked to each (final) extract
- Assumption that response of analyte = response of I.S. (response factor = 1)
- Accounts for instrument variation
- Does not account for different response vs I.S. or liquid/liquid recovery

Semi-quantitative quantification

- Internal standard (I.S.) compound spiked to each (final) extract
- Record analytical response of standard vs response of I.S. → relative response factor (RRF)
- Correct concentrations of confirmed ID's with RRF
- Accounts for instrument variation + response variation of analyte vs I.S.

In screening analysis, there is inherent uncertainty:

- Only 1 batch of test item (extractables) | batch to batch variability
- Only 1 analysis of extract | analytical procedure variability
- Compounds with unknown \rightarrow confident ID level | analytical response variability vs I.S.
- Liquid/liquid extraction | variability of extraction recovery

Use of uncertainty factors for chromatography – mass spectrometry screening methods

...

Analytical techniques – Quantification – Validated methods

Validated methods are targeted \rightarrow leachables to be quantified are a priori known

Methods are specifically developed and optimized for the target leachables

Validated quantification

- Specific internal standard for each target leachable
- Quantitative performance of method is validated:
 - Selectivity / Specificity \rightarrow no interference from blank signal, drug matrix, other leachables...
 - Limit of detection / Limit of quantification → lowest concentration level for accurate quant
 - \circ Linear range \rightarrow concentration range validated for accurate quantification
 - **Precision** \rightarrow variability of analytical method
 - Accuracy \rightarrow closeness to true value

SECOND PASS IDENTIFICATION | STRUCTURAL ELUCIDATION

High-end Mass Spectrometry

Second pass identification - Intro

- Unknown / Partially identified compounds > AET in 1st pass screening
 - Unknowns are treated as carcinogenic/mutagenic
 - To allow de-risking by tox assessment, a **structure is needed**!
- Request to **further increase ID level** (e.g. low margin of safety)
 - Tentative to Confident
 - Confident to Confirmed (standard should be available or synthesized)
- Goal of second pass studies: generate / collect comprehensive set of supporting data to increase the identification level of a target compound

Second pass identification - Instrumentation

Liquid Chromatography

- Orbitrap
- FT-Ion Cyclotron Resonance

Requirements

- High-end mass spectrometers
- (Very) high resolution
- High mass accuracy
- Multiple ionization methods
- Tandem mass spectrometry

Gas Chromatography

- Q-TOF
- Orbitrap

Second pass identification – High Resolution Accurate Mass

Element	Nominal Mass	Exact Mass
Hydrogen (H)	1	1.0078
Carbon (C)	12	12.0000
Nitrogen (N)	14	14.0031
Oxygen (O)	16	15.9949

Nitrogen gas: N₂

Nominal mass: 28 Da Exact mass: 28.0062 Da

Carbon monoxide: CO

Nominal mass: 28 Da Exact mass: 27.9949 Da

Second pass identification – High Resolution Accurate Mass

Assigning the wrong identification for a compound with a mass of 28 Da can be fatal... how to be sure?

Second pass identification – High Resolution Accurate Mass

E&L example: 2 compounds where both have nominal mass 102...

A Sotera Health company

© 2022 Nelson Labs NV | All Rights Reserved.

Important take aways around HRAM MS:

accurate mass alone does not deliver a structure...

... but delivers the elemental formula of the molecule and fragments of the molecule

high resolution does not deliver a structure...

... but enables to **separate molecules** with the same nominal mass but different elemental formulas

...but assists in confirming the elemental formula using isotope matching

Mass spectral interpretation skills and expertise are required

Second pass identification – Tandem Mass Spectrometry

Case: "de novo" structural elucidation and interpretation of HRAM MS/MS fragmentation spectra

The beautiful art of identifying an unknown

Other identification projects

E-Book Good Identification Practices:

https://www.nelsonlabs.com/good-identification-practicesfor-organic-extractables-and-leachables-via-massspectrometry/

PDA article series about identification and mitigating errors in screening for E&L:

- PDA Journal of Pharmaceutical Science and Technology January 2020, 74 (1) 90-107
- PDA Journal of Pharmaceutical Science and Technology January 2020, 74 (1) 108-133
- PDA Journal of Pharmaceutical Science and Technology January 2020, 74 (1) 134-146

Thank you

Questions?

InfoEurope@nelsonlabs.com +32 16 40 04 84

Register for **FREE** access

for this presentation and much more expert content on

Soterahealth.com/academy

Safeguarding Global Health®

Expert Lab Testing & Advisory Services

nelsonlabs.com sales@nelsonlabs.com +1 801-232-6293

Comprehensive Sterilization Solutions & Expert Advisory Services

sterigenics.com +1 800-472-4508

Reliable Global Supply of Cobalt-60

nordion.com service@nordion.com +1 800-465-3666