Extractable & Leachable Considerations for Small Volume Parenteral Applications

Dr. Eyra Marien, Team Leader SVP-Applications, Nelson Labs

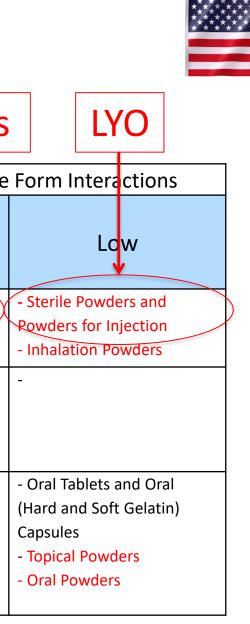
3/9/2022

CONFIDENTIAL © 2019 Nelson Laboratories, LLC | ALL RIGHTS RESERVED

Overview

- 1. Regulatory expectations (brief recap)
 - US & EU
- 2. Typical materials of construction (MoC)
 - Rubbers
 - Glass (related) issues
 - Other Materials
- 3. Container closure systems (CCS)
 - Vials
 - Prefilled syringes
 - Cartridges

1. Regulatory Expectations for Small Volume Parenterals – Brief Recap

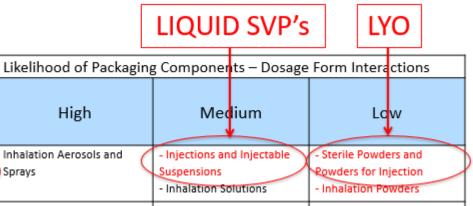


CONFIDENTIAL | © 2019 Nelson Laboratories, LLC | ALL RIGHTS RESERVED

1.1. Regulatory Expectations - US

LIQUID SVP's

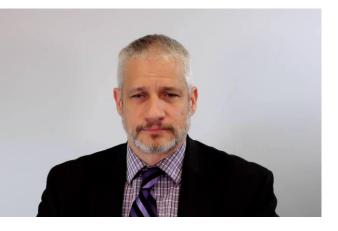
Ranking the Packaging Concerns	Degree of Concern	Likelihood of Packaging Components – Dosage	
	Associated with the		
	Route of	High	Medium
	Administration		¥
Parenteral:		Inhalation Aerosols and	- Injections and Injectable
100% Absorption/Bioavailability in Human Body Distribution via Systemic Circulation, Blood	Highest) Sprays	Suspensions - Inhalation Solutions
Intramuscular Subcutareous		Transdermal Ointments and	- Ophthalmic Solutions and
htravenous	High	Patches	Suspensions - Nasal Aerosols and Sprays
Epidermis Dermis Subcutaneous fissue Muscle	Low	 Topical Solutions and Suspensions Topical and Lingual Aerosols Oral Suspensions and Solutions 	-
Angle of injections	Adaped from USP <16	-	s revisions from origina guideline
Intramuscular Subcutaneous Intravenous Intradermal	CONFIDENTIAL © 2019 Nelson Laborat	tories, LLC ALL RIGHTS RESERVED	


nal table from FDA 1999

1.1. Regulatory Expectations - US

Remarks:

- Degree of Concern Associated with the Route of High Administration Inhalation Aerosols and Sprays Highest
- 1. "Medium" likelihood of interaction for liquid SVP:
 - Based upon the observation that most Parenteral DP are aqueous based.
 - For non-aqueous based drug products: more caution is needed!
- 2. "Low" likelihood of Interaction for Iyo SVP:
 - Mainly based upon the observation that
 - The interaction between a solid (lyo cake) and a material (eg rubber) is limited
 - Limited direct contact between lyo cake and rubber closure
 - \rightarrow However interaction for a lyo cake and material may not need always a direct contact.
 - \rightarrow BE CAREFUL when "rationalizing" a lyo application as being non critical!!!


Recent "Informal" Communications from the FDA

Video of **Dan Mellon** (FDA - CDER)

https://www.youtube.com/watch?v=mol X2zQeig

- 1. Identify leachable compounds above the Qualification Threshold (QT)
- 2. The use of inappropriate threshold levels
- 3. Inadequate sensitivity of the detection methods for leachables (AET>LOQ)
- 4. Inadequate stability data to examine trends in leachables
- 5. Inadequate toxicology justification to support a Permitted Daily Exposure (PDE)
- 6. Inadequate descriptions of how extractables data were used to design leachables assessments
- 7. Inadequate correlations between extractables & leachables



1.2. Regulatory expectations – EU

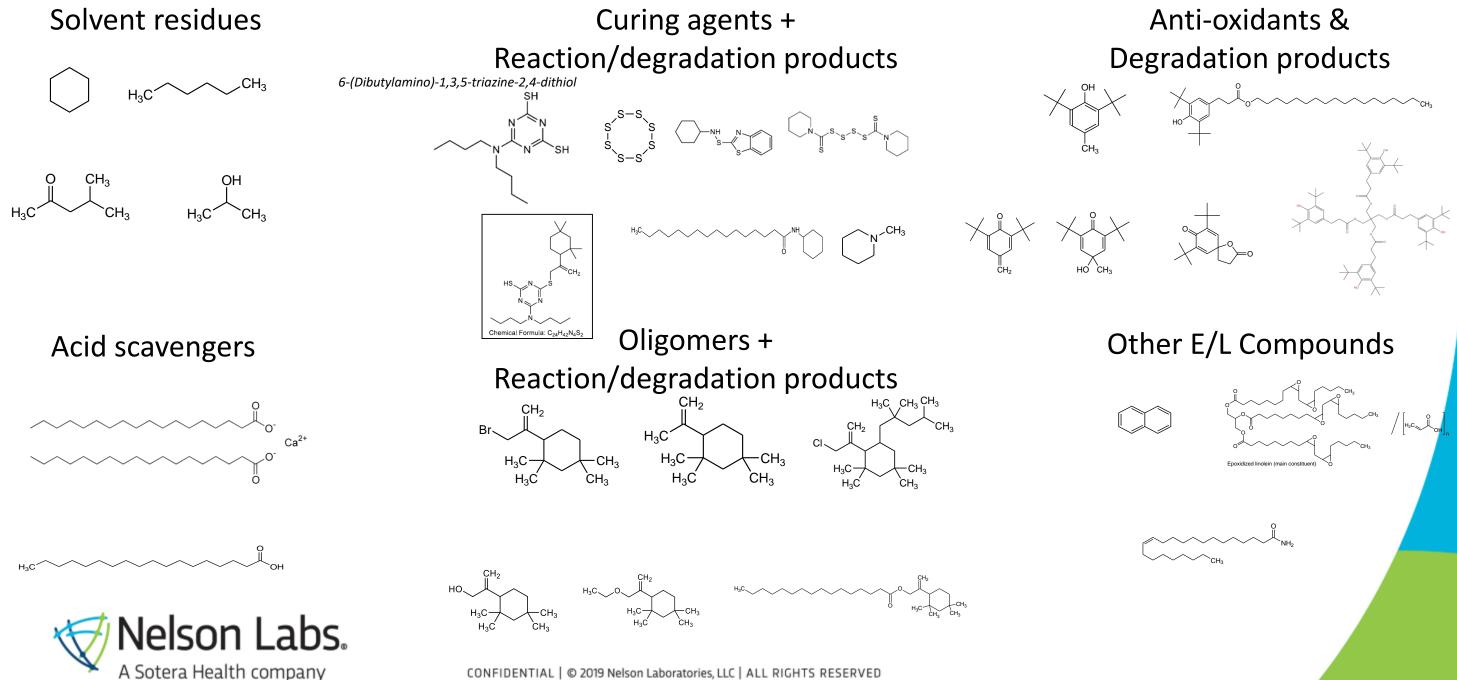
• Going through the decision tree: liquid dosage forms – high requirements

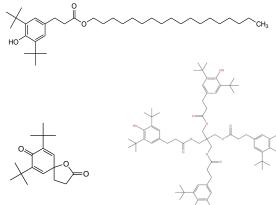
Plastic packaging material for drug products

2. Materials of Construction (MoC) for SVP Containers, and their associated Extractable & Leachable Profiles

CONFIDENTIAL | © 2019 Nelson Laboratories, LLC | ALL RIGHTS RESERVED

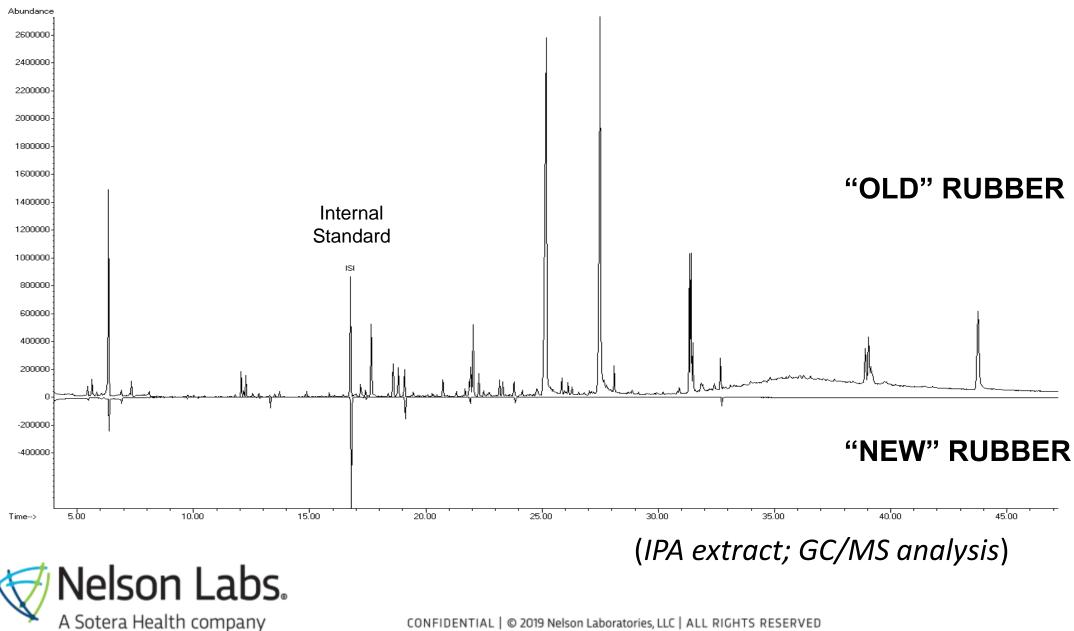
Composition of rubbers can be very complex!!


- **1**. Initial ingredients of the rubber formulation
- 2. Impurities of these ingredients (e.g. residual solvents, oligomers in elastomer, halides in halobutyl rubber, et cet.)
- 3. Reaction / degradation products during rubber production



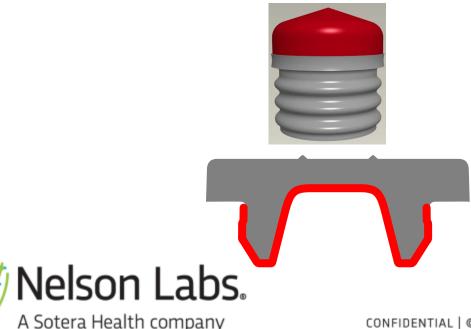
2.1. Materials of Construction: Rubbers – Examples of E/L

Smart selection of ingredients can tune a rubber compound!

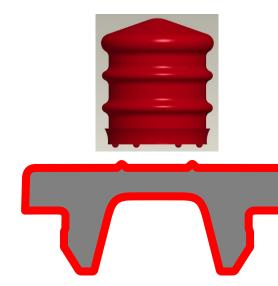

But in general too many ingredients should be avoided → negative impact on extractables profile:

"What you don't put in, can't come out"

Difference in extractable results for an **OLD** vs **NEW** rubber

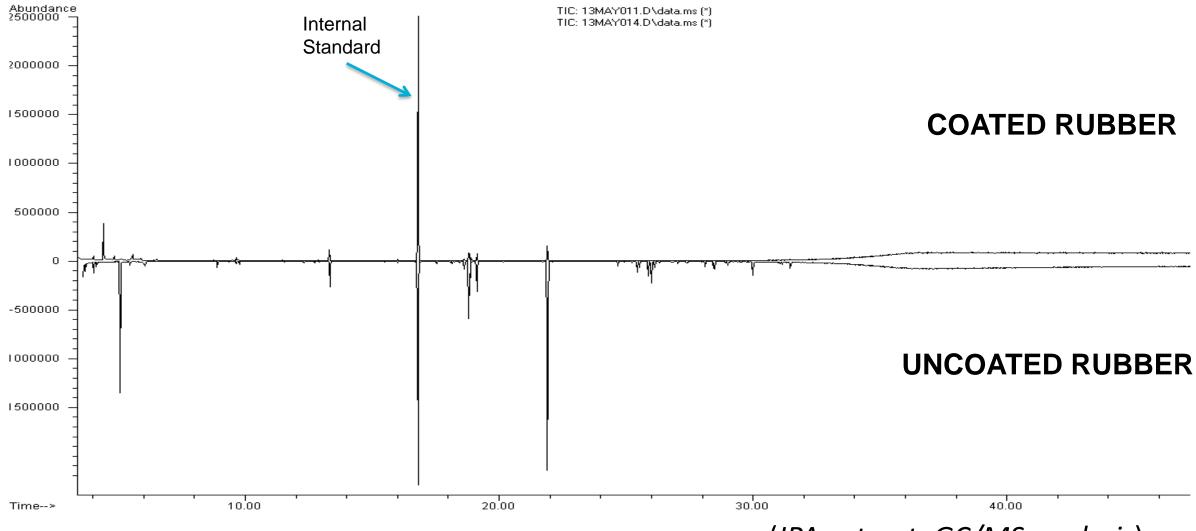


CONFIDENTIAL | © 2019 Nelson Laboratories, LLC | ALL RIGHTS RESERVED



- Coated closures: barrier effect from the fluoropolymer!
 - Simplified extractables profile
 - Improved drug / excepients compatibility
- Different technologies:

Film coating technology


Spray coating technology

Difference in extractable results for an **COATED** vs **UNCOATED** rubber (same rubber grade)

⁽IPA extract; GC/MS analysis)

Number of leachables from rubbers in SVPs is determined by:

- The type of rubber formulation
- The number of ingredients in the rubber
- Type of ingredients (e.g. type of vulcanisation, type of AO, stabilizer....)
- Coated/non-coated rubbers
- The composition of the drug product
- The type of contact between the rubber and the drug product (e.g. exposed surface area)
- The storage temperature
- The storage time (expiration date)

2.2. Materials of Construction: Glass

GLASS COMPOSITION FOR DIFFERENT GLASS TYPES

Component	Type I Borosilicate)	Type II, III, NP (Soda-Lime)
SiO ₂	70 - 73%	69 - 73%
B ₂ O ₃	10%	0 - 1%
Na ₂ O	2 - 9%	13 - 14%
Al ₂ O ₃	6 - 7%	2 - 4%
BaO	0,1 - 2,0%	0 - 2%
K ₂ O	1 - 2%	0 - 3%
CaO	0,7 - 1,0%	5 - 7%
MgO	0 - 0,5%	3 - 4%
ZnO	0 - 0,5%	-

"Soda – Lime"

2.2. Materials of Construction: Glass

RISK OF GLASS LEACHABLES

Major extractables from glass

- Alkali release (Na₂O)
- Silica release (Si₂O)

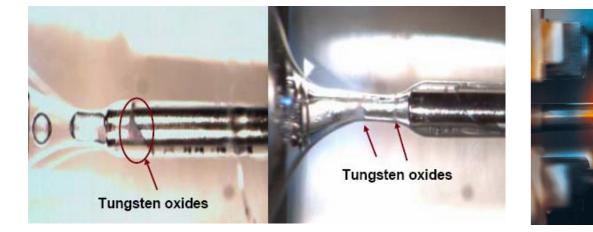
Minor extractables from glass

- K (K_2O), B (B_2O_3), Ca (CaO), Al (Al_2O_3) (more in alkaline environment!)
- Traces of Fe
- As (glass can contain arsenic oxide (III) as a fining agent to improve glass tranparency)

Possible risks:

- Al can accumulate in patients with reduced renal function, causing e.g. neurological diseases
- As is toxic
- Alkali release: pH shift of unbuffered solutions
- Release of metals can cause precipitation with some salts present in the DP

 $eg: Ba => BaSO_4$, $Al => Al(OH)_3$



2.2.1. Materials of Construction: Glass Related Issues

TUNGSTEN RESIDUES – PREFILLED SYRINGES

- Tungsten pin used in the production of glass pre-filled syringes to open the lacksquaresyringe hub (cavity where staked needle is glued in)
- \rightarrow Tungsten oxide residues are known to cause protein degradation (protein) oxidation causing aggregation)

2.2.2. Materials of Construction: Glass Related Issues

GLUE RESIDUES – PREFILLED SYRINGES

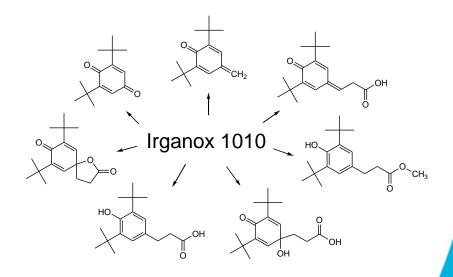
- Glue is used to glue in the staked needle into the PFS-system
- Prolonged contact with a drug product may release glue components
- Target compounds may depend upon the glue used (through UV Curing)

nts uring)

2.2.3. Materials of Construction: Glass Related Issues

SILICONE OIL RESIDUES

- Silicone oil residues may denaturate proteins or form aggregates ۲
- Glass surfaces are siliconized a.o. to reduce potential interactions with aqueous contact ulletsolutions
 - Hydrophobic surface / reduced wettability Ο
 - Reduced alkali release \bigcirc
 - Silicone oil remainders become leachables \bigcirc


Less of an issue with **Baked Silicone**

2.3. Materials of Construction: Polymers for Containers

Cyclic Olefin Polymers = COP Cyclic Olefin Copolymers = COC Polypropylene = PP

Typical composition of commercial polymers for barrel manufacture

- Additives (BHT, Irganox 1010, stearates, pigments, clarifiers)
- Residues (monomers, solvent residues, processing residues)
- Oligomers (especially for PP)
- Degradation products from above compounds (organic acids, aldehydes, ketons, alcohols, chain scission fragments)

2.4. Associated Concerns for Polymers Containers: Secondary Packaging

Regulatory Requirements for Secondary Packaging

FDA guidance document: 'Container Closure systems for Packaging Human Drugs and Biologics', 1999:

"If the packaging system is <u>relatively permeable</u>, the possibility increases that the dosage form could be contaminated by the migration of an ink or adhesive component...In such case the secondary packaging component should be considered a potential source of contamination and the safety of its materials of construction should be taken into consideration..."

EMA: 'Guideline on Plastic Immediate Packaging Materials', 2005:

"It should be scientifically demonstrated that no components of ink or adhesives, applied to the outer surface of the container closure system, will migrate into the medicinal product."

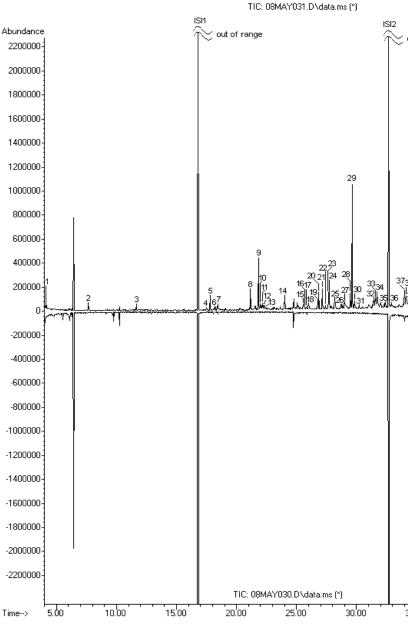
2.4.1. Associated Concerns for Polymers Containers: Secondary Packaging

Label

= paper + ink + varnish + adhesive

Typical extractable compounds:

A Sotera Health company


- Curing agents (e.g. benzophenone, Irgacure 184,...)
- Solvent residues (e.g. toluene, acetone)
- Adhesive residues (e.g. acrylates)
- Paper residues (e.g. (dehydro)abietic acids, abietates)

2.4.1. Associated Concerns for Polymers Containers: Secondary Packaging

Example chromatogram for GC/MS analysis of IPA extract

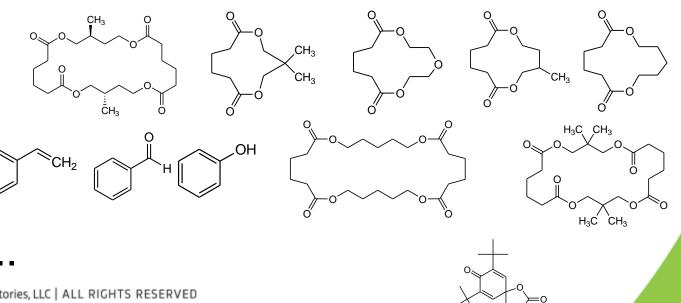
∽ out of range

12-B1127-N2:Sample extract

Extraction blank

40.00 45.00 35.00

2.4.2. Associated Concerns for Polymers Containers: Secondary Packaging

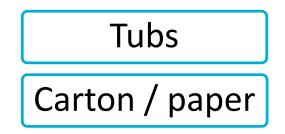

Overwrap / overpouch / blister

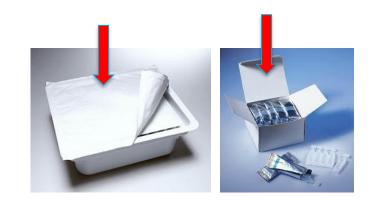
(to compensate for potential lower barrier properties of the polymer)


- Multilayer system
- Aluminum as barrier layer
- Tie-layers to keep the different layers together

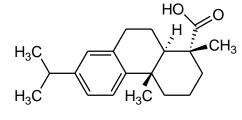
Typical extractable compounds:

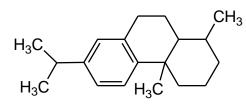
- Bislactone compounds from Tie-layer
- Residues from other layers (depends largely on selected materials of the multilayer)



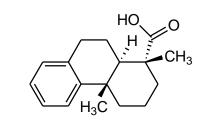


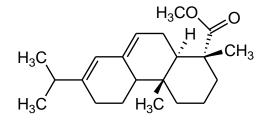
bislactones

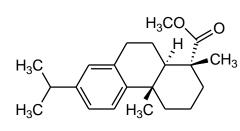

2.4.3. Associated Concerns for Polymers Containers: Secondary Packaging



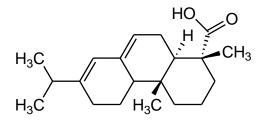
for nested syringes (eg Tyvek) also from label

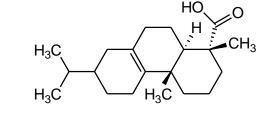

Example structures of abietic acids, abietates and vanillin

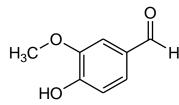


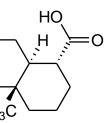


H₃C


H₃Ć






•CH₃

H₃C

H₃Ć

CONFIDENTIAL | © 2019 Nelson Laboratories, LLC | ALL RIGHTS RESERVED

3. What Does it mean for the different SVP- Container **Closure Systems?**

CONFIDENTIAL RIGHTS RESERVED © 2019 Nelson Laboratories, LLC

1.Vials:

CONFIDENTIAL | © 2019 Nelson Laboratories, LLC | ALL RIGHTS RESERVED

Glass Vials

Liquid Drug Products

Reconstitution Solution

Glass vial: Metals (direct assessment in LEA study if glass composition is available)

Rubber closure:

- \checkmark Inverted position \rightarrow higher migration
- ✓ Migration will be determined by:
 - Solubility of leachables in drug product solution
 - Potential diffusion of compounds through rubber, into solution
 - Temperature
 - Coated vs. non-coated
- ✓ VOC, SVOC and NVOC, silicone oil and some metals may cause:
 - Safety issue
 - Reactive with drug product: also potential Performance & Quality Issue!
- ✓ Also, ions (chloride, bromide and fluoride) may need to be "checked off"...

Polymeric Vials

Liquid Drug Products

Reconstitution Solution

> Polymer vial:

- ✓ VOC, SVOC and NVOC and some metals may cause:
 - Safety issue
 - Reactive e.g. with reconstituted DP: also potential Performance & Quality Issue!
- ✓ Also, ions (eg. acetate and formate) may need to be "checked off"...

Rubber closure: (see previous slide)

Secondary packaging:

- ✓ Label
- ✓ Overwrap/overpouch/blister
- ✓ Tubs
- ✓ Carton/paper

2. Pre-Filled Syringe:

CONFIDENTIAL | © 2019 Nelson Laboratories, LLC | ALL RIGHTS RESERVED

Glass Pre-Filled Syringes

Glass barrel:

- ✓ Metals
- ✓ Silicone oil
- ✓ In case of staked needle:
 - Tungsten residues
 - Needle glue

Rubber plunger (very similar to rubber stopper for vial):

- ✓ Horizontal position -> contact with all parts
- ✓ Migration will be determined by:
 - Solubility of leachables in drug product solution
 - Potential diffusion of compounds through rubber, into solution
 - Temperature
 - Coated vs. non-coated
- ✓ VOC, SVOC and NVOC, silicone oil and some metals may cause:
 - Safety issue

A Sotera Health company

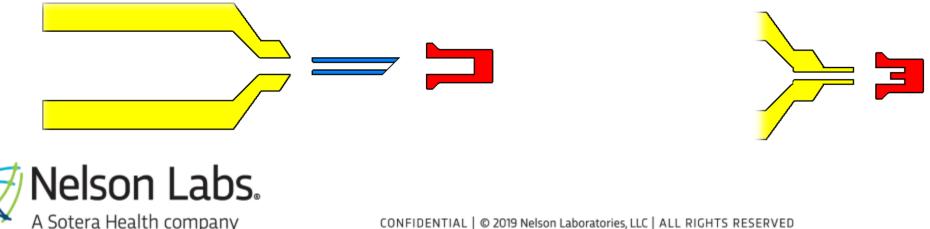
• Reactive with drug product: also potential Performance & Quality Issue!

✓ Also, ions (chloride, bromide and fluoride) may need to be "checked off"...
 Nelson Labs.

Polymeric Pre-Filled Syringes

> Polymeric barrel:

- ✓ VOC, SVOC and NVOC, silicone oil and some metals may cause:
 - Safety issue
 - Reactive e.g. with reconstituted DP: also potential Performance & Quality Issue!
- ✓ Also, ions (eg. acetate and formate) may need to be "checked off"...
- Rubber plunger (see previous slide)
- > Secondary packaging:
 - ✓ Label
 - ✓ Overwrap/overpouch/blister
 - ✓ Tubs
 - ✓ Carton/paper


Pre-Filled Syringes

Needle shield

- ✓ No direct contact between drug product and needle shield
- ✓ HOWEVER: Release of VOC and SVOC compounds from the needle shield into the content of the PFS is possible!
- \checkmark VOC and SVOC \rightarrow potential Safety issue and Performance & Quality Issue
- ✓ Typically no NVOC, metals and ions investigation is necessary

> Tip Cap

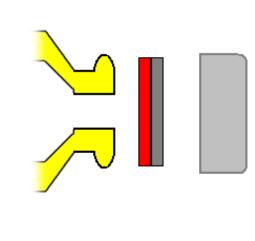
✓ Direct contact between drug product and tip cap

3. Cartridges

CONFIDENTIAL | © 2019 Nelson Laboratories, LLC | ALL RIGHTS RESERVED

Cartridges

- > Glass barrel:
 - ✓ Metals
 - ✓ Silicone oil


Cartridge plunger (very similar as for PFS):

- \checkmark Horizontal position -> contact with both rubber closures
- \checkmark Migration will be determined by:
 - Solubility of leachables in reconstitution Solution (typically inorganic aqueous solution (typically low solubility for most non-polar organic compounds))
 - Potential diffusion of compounds through rubber, into solution ۰
 - Temperature •
 - Coated vs. non-coated
- ✓ VOC, SVOC and NVOC, silicone oil and some metals may cause:
 - Safety issue •
 - Reactive with drug product: also potential Performance & Quality Issue! •
- ✓ Also, ions (chloride, bromide and fluoride) may need to be "checked off"...

Cartridges

Sealing Disk:

- ✓ Typically, a sealing disk is a two-layered system
- ✓ The inner layer has product contact (primary contact), should be the focus of the investigation
 - "One Sided" extraction mimics the product contact, avoids contribution of the outer layer
 - "Complete Extraction" of the 2 layered sealing disk can be considered as worst case
- \rightarrow Both approaches can be taken and have found regulatory acceptance

Questions?

Dr. Eyra Marien, Team Leader SVP-Applications, Nelson Labs Europe e-mail: <a href="mailto:emailt Tel: +32 16 40 04 84

CONFIDENTIAL © 2019 Nelson Laboratories, LLC | ALL RIGHTS RESERVED

Thank you

Questions? InfoEurope@nelsonlabs.com +32 16 40 04 84

CONFIDENTIAL | © 2019 Nelson Laboratories, LLC | ALL RIGHTS RESERVED

Register for **FREE** access

for this presentation and much more expert content on

Expert Lab Testing & Advisory Services

nelsonlabs.com sales@nelsonlabs.com +1801-232-6293

Comprehensive **Sterilization Solutions & Expert Advisory Services**

sterigenics.com +1800-472-4508

Cobalt-60

nordion.com service@nordion.com +1 800-465-3666

Nordion.

A Sotera Health company

Reliable Global Supply of