

Radiation sterilization of SVPP: RTU and fill/finished.

Do not default to 25 kGy – 40 kGy

DR. BART CROONENBORGHS TECHNICAL DIRECTOR IRRADIATION – STERIGENICS BCROONENBORGHS@EU.STERIGENICS.COM

Small Volume Parenteral Packaging: Radiation Sterilised*

*Illustrative purposes

Radiation Technology (Gamma, electron beam)

Establishing Product dose specification

Terminal Sterilization of fill finished product, examples

IRRADIATION TECHNOLOGY

General Introduction

In essence only single process variable = dose (kGy)

Type of radiation, generation and directionality of radiation field

Cobalt60 Gamma

Process Variables

- Irradiation Pathway
- Cycle time
- Load configuration in irradiation container
- Mixing of product in irradiator

Process Characteristics

- Irradiation Time: order of several hours
- Heating: non-adiabatic
- Typically different product irradiated together (processing categories)
- Dose magnitude and dose uniformity can generally be predicted reasonably well without PQ dose mapping

Type of radiation, generation and directionality of radiation field

Electron Beam

can be tailored to product needs

Process Variables

- Beam intensity
- Beam position/extent
- Speed of product through radiation field
- Irradiation pathway (single- or double-sided irradiation)
- Load configuration of irradiation container

Process Characteristics

- Time: Irradiation time only seconds
- Heating: Adiabatic (polymer approx. 0.7 °C per kGy)
- Dose magnitude and dose uniformity for product difficult to predict in general

Penetration and uniformity of dose delivery

Dose uniformity (experimental data irradiator qualification)

*DUR = Dose Uniformity Ratio = Max dose/Min dose

10 MeV Electron Beam

 $\begin{array}{l} 40 \text{ cm box} \\ 0.15 \text{ g/cm}^3 \text{ (density of 6 cm water)} \end{array}$

60Co Gamma

Industrial Pallet (100 cm \times 120 cm \times 180 cm) 0.15 g/cm³ (density of 15 cm water)

DUR* 2.83 (Double sided irradiation)

DUR* 1.66

(Double sided irradiation)

PRODUCT DOSE SPECIFICATION

Background to "default" product specification of 25 kGy – 40 kGy

"Belief" of a dose that an irradiator operator "needs" when running at a minimum of 25 kGy

This is a specification NOT based on product nor on "standard" irradiator capabilities

Uniformity of dose delivery

Possible gain of a properly widened dose specification

Supply chain

More options for irradiating product

- In the desired irradiator
- In other irradiators of the same modality
- In irradiators with other modality

TOTAL addressable Market

More options for using the packaging

- Terminal sterilisation of fill finished product

Methods for sterilization dose establishment (Healthcare product)

- Method 1, Method 2
 - Methods 1 and 2 *set* a product-specific dose for obtaining a defined SAL level

(SAL = Sterility Assurance Level)

• Method VD_{max}^{SD}

Method VD_{max}^{SD} *substantiates* a selected sterilization dose

- Initially applied to substantiation of 25 kGy as a sterilization dose
- Subsequently expanded to other doses
- Only SAL 10-6

Method VDmaxSD

Avg. Bioburden Range	Sterilization
(Colony Forming	Dose SD
Units)	(kGy)
\leq 0.1 to 1.5	15.0
\leq 0.1 to 9.0	17.5
\leq 0.1 to 45	20.0
\leq 0.1 to 220	22.5
<mark>≤0.1 to 1000</mark>	<mark>25.0</mark>
\leq 1.0 to 5000	27.5
\leq 1.0 to 23000	30.0
\leq 1.0 to 100000	32.5
\leq 1.0 to 440000	35.0

Methods for sterilization dose establishment (Healthcare product)

For a defined product (SAL 10-6), example average bioburden 25 CFU

"Standard Distribution of Resistances"

Method 1 conservativeness of "Standard Distribution of Resistances"

Method 2Purely based on resistance of organisms residing on defined product

Numerical examples

Avg. Bioburden	Method VDmaxSD	Method 1
1000 CFU	25.0 kGy	25.0 kGy
100 CFU	22.5 kGy	21.2 kGy
10 CFU	20.0 kGy	17.6 kGy
1 CFU	15.0 kGy	14.2 kGy
≤ 0.1 CFU	15.0 kGy	11.0 kGy

For a defined product with average bioburden (dose achieving SAL 10⁻⁶)

Selection of sterilization doses (kGy) established for customers with SVPP at SterigenicsMethod VDmaxSDMethod 1Method 2

Establishing maximum acceptable dose

- 1) Irradiate samples in a uniform way at selected doses
 - Might be more complicated to irradiate uniformly in e-beam than gamma
 - > On the other hand, likely specialized irradiator needed in gamma to obtain selected doses
- 2) Evaluation based on performance attributes e.g. Appearance, E&L, sealant properties etc.

16

TERMINAL STERILIZATION OF FILL FINISHED PRODUCT

Examples of terminal sterilization using ionizing radiation at Sterigenics

1) Terminal sterilization of <u>aseptically</u> manufactured biologic

2) Terminal sterilization of pre-filled syringe under <u>deep-frozen condition</u>

3) Terminal sterilization powder filled vial using e-beam (50 kGy maximum acceptable dose)

Key take-aways

• Irradiation technology can be applied for more than sterilization of packaging components

- Inherent possibility to irradiate in a substantially more uniform manner using Gamma than when using electron beam
- Do not default to 25 kGy 40 kGy; but customize...

