

Challenges for testing of leachables migrated from a bag system into parenteral solutions

PIETER VAN WOUWE

High daily dosed drug products require a different E/L approach

Key tasks to approach LVP leachable studies

Nelson Labs. A Sotera Health company

Strong interaction between analytics and toxicology is crucial in successful large volume parenteral leachable studies

Outline

Transition from extractable to leachable study

Design of the leachable study

Further steps based on leachable data

"Critical" target compounds should be selected from extractable data, and should be monitored in the leachable study

Safety concern threshold for parenteral drug products (PDP, PQRI)

Specific to route of administration

Threshold below which a leachable would have a dose so low as to present negligible safety concerns from mutagenic and non mutagenic toxic effects

Tox endpoint	General tox.	Sensitizer & irritant	Carcinogen
Class	Class I	Class II	Class III
Threshold level (µg/day)	5	5	1.5 (PDP-SCT)

The analytical evaluation threshold for screening methodology

 $1.5\ \mu\text{g/day}$ (SCT)

Final AET (µg/L) =

Max daily dose (L/day) X uncertainty factor

Lower AETs in extractable study result in more target compounds for leachable study

Abundance

Time-->

Lower AETs in extractable study result in more target compounds for leachable study

Abundance

Lower AETs in extractable study result in more target compounds for leachable study

Abundance

Nelson Labs. A Sotera Health company

High number of compounds above the (final) AET in the simulation study

µg/l COMPOUND 1 8 COMPOUND 2 8.2 **COMPOUND 3** 5.9 **COMPOUND 4** 5.6 !! 60 differential compounds > final AET !! **COMPOUND 5** 6.2 Abundance 600000-**COMPOUND 58** 6.2 **COMPOUND 59** 170 **COMPOUND 60** 110 400000 200000-SCT ~ Final AET (1.5 µg/day) ~ 3 µg/l 15.00 25.00 30.00 20.00 10.00 Time--> **Nelson Labs**. A Sotera Health company

Toxicological data should support further refining of target selection

Permitted Daily Exposure values as valuable alternative for PQRI limits

Permitted Daily Exposure (PDE):

-compound specific

-proposed by toxicologist based on data

-typically orders of magnitude higher than PQRI threshold

PQRI thresholds: -generic thresholds -conservative

Tox endpoint	General tox.	Sensitizer & irritant	Carcinogen
Class	Class I	Class II	Class III
Threshold level (µg/day)	5	5	1.5 (PDP-SCT)

Evaluation of extractable data against compound specific final AET (PDE based)

	PDE (µg/day)	Final "cmp" specifi AET (µg/l)	C	Result (µg/l)
COMPOUND 1	38800	11800	>	8
COMPOUND 2	600	182	>	8.2
COMPOUND 3	5000	1510	>	5.9
COMPOUND 4	3000	908	>	5.6
COMPOUND 5	50	15	>	6.2
COMPOUND 6	153	46	<	62
COMPOUND 17	5	1.5	<	3.2
COMPOUND 23	5	1.5	<	1.6
COMPOUND 26	5	1.5	<	3.2
COMPOUND 58	50	15	>	6.2
COMPOUND 59	100000	30300	>	170
COMPOUND 60	800	242	>	110
Melson Labs				

CONFIDENTIAL | © 2021 Nelson Laboratories, LLC | ALL RIGHTS RESERVED

A Sotera Health company

Outline

Transition from extractable to leachable study

Design of the leachable study

Further steps based on leachable data

Leachable study consists of targeted methods and screening

Target compounds preferably addressed by validated methods

GC-QQQ, LC-QQQ,...

Further optimized in function of target compound(s)

Specificity, LOD, LOQ, accuracy, precision, calibration range (ICH Q2D)

Calibration range and LOQ are based on toxicological data (PDE)

Calibration range and LOQ are based on toxicological data (PDE)

Calibration range and LOQ are based on toxicological data (PDE)

Calibration range and LOQ are based on PQRI thresholds

Leachable study should consist of targeted methods and screening

Screening with Nelson Labs state-of-the-art methodology

-commercial libraries (NIST, Wiley)

What if the final AET can not be reached

Adjusting both the ageing/leaching set-up and sample preparation might lead in reaching the (final) AET level

The use of small scale versions of the commercial bag system allows screening at lower AETs

Commercial bag (for e.g. 1 L):

- low surface/volume
- low leachable concentration

Small scale bag (for e.g. 250 mL)

- high surface/volume
- high leachable concentration

The aimed (final) AET will linearly increase with the surface to volume ratio of the bag (if concentrations < solubility limits)

The aimed (final) AET will linearly increase with the surface to volume ratio of the bag: practical example

Results obtained in small scale model should be backcalculated to commercial bag system

Adjusting both the ageing/leaching set-up and sample preparation might lead in reaching the (final) AET level

Adjust sample preparation methodology: further concentration of the (leachables) in the drug product increases the sensitivity

concentrate 100 - 200 times (limited by DP interference)

=>Decrease LOD in DP sample

"Clean" sample preparation of utmost importance in LVP studies

Concentration step also concentrates possible contaminations

Use of high purity solvents

Simulation study might "fill the gaps" if final AET can not be reached in drug product

Outline

Transition from extractable to leachable study

Design of the leachable study

Further steps based on leachable data

Screening leachable data will result in (non target) compounds above the final AET

Nelson Labs. A Sotera Health company

Both additional analytical & toxicological work is required for compounds detected above (final) AET

Identification of unknowns: second pass testing

Typically present at low concentrations -Compounds which migrate at very low concentrations from plastics -Secondary leachables -Antioxidant degradation products

Permitted Daily Exposure values/Safety statements are required Determined by toxicologist Necessary for additional analytical work

Additional measurements with validated methods PDE values necessary

Conclusion

Transition from extractable to leachable study Toxicological data for target selection

Design of the leachable study Adjustments in design and sample prep

Further steps based on leachable data Identification work, PDEs and validation

For More Educational Events & Resources Visit

Three Companies. One Focus. Safeguarding Global Health_@

Expert Lab Testing & Advisory Services

Nelsonlabs.com/education

InfoEurope@nelsonlabs.com +32 16 40 04 84

Comprehensive Sterilization Solutions & Expert Advisory Services

Sterigenics.com/resources

+1 800-472-4508

Reliable Global Supply Of Cobalt-60

Nordion.com/education

service@nordion.com + 1-800-465-3666

