FILLING YOUR NEEDS



### Blow-Fill-Seal technology in Large Volume Parenteral Packaging

Nelson Symposium March 24th, 2021

Michael Spallek, Rommelag R&D



### Blow-Fill-Seal technology in Large Volume Parenteral Packaging



Overview



- 1. Rommelag and Principles of Blow-Fill-Seal
- 2. Containers & Material Selection
- 3. Recent Innovation in LVP-packaging
- 4. Summary

Rommelag engineering and Rommelag CMO: Synergy of machine & contract manufacturing in Blow-Fill-Seal.



Kocher-Plastik

ROMMELAG ENGINEERING



Maroplastic



### Blow-Fill-seal (BFS) technology is based on well known extrusion-blow molding.





## Within seconds Blow-Fill-seal (BFS) produces filled and closed LVP-containers from polymer granulate.





#### cycle time approx. 15 sec

/1/ R. Oschmann and O.E. Schubert, Eds., Blow-Fill-Seal Technology, CRC Press, Stuttgart, 1999

/2/ The manufacture of sterile pharmaceuticals and liquid medical devices using blow-fill-seal technology, BFS International Operators Association, Editio Cantor Verlag, 2016

/3/ The manufacture of sterile pharmaceutical products using Blow-Fill-Seal-Technology, PDA, Technical Report No. 77, 2017

### Blow-Fill-Seal in a detailed view on LVP-Bottles produced from an 8-fold mold.



https://vimeo.com/224430468

https://vimeo.com/224430468

ROMMELAG ENGINEERING BFS is highly integrated aseptic pharma packaging: Advanced aseptic technology overview.





## BFS is Advanced aseptic technology well established in the pharma market.



**Blow-Fill-Seal** 



BFS is a production process based on extrusion blow molding **dedicated to pharma packaging** 

Key features:

- -1- Advanced Aseptic Processing\*
- -2- Hygienic design
- -3- Ultra-Compact A-Zone 500 x 200 mm

-4- Production capacity (e.g. 250 ml, PP): from 2000 pcs /h (bp 321, 8 fold); 12 mio/a up to 8800 pcs /h (bp 364, 14 fold); 52 mio/a

\*USP < 1116> "Advanced aseptic processing" EU-GMP Guide Annex 1 (Chapter 26-27) FDA 9-2004, Guidance for Industry, Sterile Products Produced by Aseptic Processing, Appendix 2: BFS

## BFS is used for primary packaging of liquid drug products from LVP to ophthalmics.









## BFS for LVP cover bottle-type & bag type containers.





## Single drug contact materials for BFS packaging are medical grade polyolefins.



#### **Standard Materials**



LDPE or PP Medical grades from e.g. Borealis (Bormed®) LyondellBasell (Purell®), INEOS, Total, Flint Hills, etc.

#### Autoclavable LDPE 106-115°C; PP 121°C

Extractables dossiers available for selected PE and PPs (by Toxikon)

#### E&L Summary by Piet Christiaens

For aqueous Drug Products, the Extractable Results show a low risk of leaching of compounds to a relevant level.

Piet Christiaens & Michael Spallek

The Importance of a thorough material selection for Blow-Fill-Seal applications, an E/L-Perspective PDA Parenteral Packaging, Venice April 13, 2016

### Coextrusion & cyclic polyolefins are options to fulfill specific requirements.





## The BFS test kit allows an easy pre-test / compatibility test with selected standard BFS materials.







- empty, closed BFS containers
- manufactured according GMP regulations
- inside sterile
- max. filling volume approx. 10 mL
- suitable for use in client's lab
- low efforts to start first stability trials
- certain extractables dossiers available

### BFS test kit handling is straight forward.







warming with heat gun











### Blow-Fill-Seal technology in Large Volume Parenteral Packaging



Overview

- 1. Rommelag and Principles of Blow-Fill-Seal
- 2. Containers & Material Selection
- 3. Recent Innovation: EasyEmpty-Bottles
- 4. Summary



The objectives for new high performance, self collapsing infusion bottles were challenging.

#### From Market to innovation

|                           | Established<br>LD-PE-bottle | Established<br>PP-bottle |  | New bottle           |
|---------------------------|-----------------------------|--------------------------|--|----------------------|
| Safety                    | +                           | +                        |  | +                    |
| Particulate matter        | +                           | +                        |  | +                    |
| Sterilization temperature | 106°C                       | 121°C                    |  | 121°C                |
| Sterilization time        | ≥ 85 min                    | ≥ 20 min                 |  | ≥ 20 min             |
| Container size            | Minimal<br>headspace        | Increased<br>headspace   |  | Minimal<br>headspace |
| Unvented administration   | Good                        | Good, if                 |  | Good                 |



The relevant parameters for the discharge behavior have been identified.





Analysis of various "standard bottle designs" indicated design improvements.

Input A : Design / shape





 ringe Levels

 2.230e+01

 2.007e+01

 1.784e+01

 1.561e+01

 1.338e+01

 1.115e+01

 8.921e+00

 6.691e+00

 4.461e+00

 2.230e+00

 0.000e+00

 no dislocation

 of the FEM volume element

Simulation: folding works & use low Young's modulus PP





Discharge time

Christoph Kaschta / Rommelag Engineering

Lenc

### The new EasyEmpty design bottles compare very well to established products on the market.





Fast motion; total time for EE (SB815MO) 18 min

# Summary: Blow-Fill-Seal technology in Large Volume Parenteral Packaging.



Take home Messages

- 1. Within seconds Blow-Fill-seal (BFS) produces filled and closed LVP-containers from polymer granulate.
- 2. Polyolefins are well established for BFS-primary packaging of LVPs using a single drug contact material.
- 3. Coextrusion & cyclic polyolefins are options to fulfill specific requirements e.g. low sorption with COP & COC
- 4. The BFS test kit allows an easy pre-test for material selection.
- 5. The administration behavior of the new EasyEmpty design bottles compares very well to established products on the market.



### Literature





- 1. R. Oschmann and O.E. Schubert, Eds., Blow-Fill-Seal Technology, CRC Press, Stuttgart, 1999
- The manufacture of sterile pharmaceuticals and liquid medical devices using blow-fill-seal technology, BFS International Operators Association, Editio Cantor Verlag, 2016
- The manufacture of sterile pharmaceutical products using Blow-Fill-Seal-Technology, PDA, Technical Report No. 77, 2017
- 4. EU Guidelines to Good Manufacturing Practice, Annex 1, Manufacture of Sterile Medicinal Products, Brussels, 2008
- 5. Michael Spallek et al., Heat effects on sensitive formulations during blow-fill-seal processing, PDA Parenteral Packaging, Brussels, 3-2014