

WHAT'S NEW IN RADIATION STERILIZATION AND **DISCUSSION ON GAMMA/ELECTRON BEAM/X-RAY**

Martell Winters Director of Science mwinters@nelsonlabs.com

FEBRUARY 2020

CONFIDENTIAL © 2020 Nelson Laboratories, LLC | ALL RIGHTS RESERVED

AAMI TIR 76 – VDMAX – ANY SAL, ANY DOSE

Calculation Spreadsheet (CS) for Method VD _{max} ^{SD-S} Values							
	Calculation Outputs						
Calculation Identifier (Optional):		Enter optional calculation identifier.	Verify entries in the green-highlighted Calculation Input cells prior to recording, printing, or saving Calculation Outputs.				
Multiple or Single Production Batch Sterilization Dose Substantiation?	Multiple	Enter either "Multiple" or "Single". (No quotation marks)					
Batch #1 or Single Batch Average Bioburden	450.00	Values must be for SIP = 1.0. For multiple production batches, enter a value greater than or equal to 0.01 and less than or equal to 1,000,000 into each of					
Batch #2 Average Bioburden	135.00	the three cells. The average values entered here must include all dilution and recovery efficiency factors. For a single production batch, enter a value only	VD _{max} ^{SD-S} Calculation Bioburden Value	300.0			
Batch #3 Average Bioburden	270.00	in the uppermost cell (C5); entries in cells C6 and C7 are ignored for a single batch sterilization dose substantiation.	SIP = 1.0 Verification Dose (kGy)	8.6			
Overall Average Bioburden	285.0	Calculated value	SIP < 1.0 Verification Dose (kGy)	NA - SIP = 1.0 Input			
Sterility Assurance Level (SAL)	-6.0	Enter one of the following values: -6, -5.5, -5, -4.5, -4, -3.5, or -3.	Dose Augmentation Value (kGy)				
Minimum Sterilization Dose (kGy)	22.9	Calculated value	C:\Users\mwinters\Documents\mw\AAMI\VDmax other SALs\[VDmax_CS_AAMI_082217.xlsm]VDmax CS				
Selected Sterilization Dose (kGy)	25.0	Enter a value that is equal to or greater than the Calculated Minimum Sterilization Dose in cell C15 above and less than or equal to 36.4 kGy.					
SIP	1.00	Enter a value between 0.01 and 1.0, inclusive.					
Number of Product Items for Irradiation	10	Enter either 10, 30, or 90.	1/22/18 3:47 PM				

Acceptance criteria: 1 non-sterile product of 10 tested \rightarrow 2 (+) of 10 tested

Table 4 — Probabilities of occurrence of numbers of positives around an average of one, distributed according to the Poisson distribution

	Nelson	Labs.
$\mathbf{\mathbf{v}}$	A Sotera Health	company

Number of positives	0	1	2	3	4	5	6	7	8
Probability (%)	36.6	37.0	18.5	6.1	1.5	0.3	0.05	0.006	0.0007

AAMI TIR 104 TRANSFERRING PRODUCT BETWEEN RADIATION SITES OR MODALITIES

- Transfer of maximum sterilization dose from one source to another
 - ISO 11137-1, Clause 8.4.1: Assessment that differences in radiation source don't affect validity of the dose
 - TIR 104, Clause 5.2: Differences in dose rate show the strongest influence on whether the maximum permissible dose can be transferred.
 - Several pages of additional guidance
- Transfer of verification or sterilization dose
 - ISO 11137-1, Clause 8.4.2: Demonstrate no difference in microbicidal effectiveness
 - TIR 104, Clause 4.1: Tallentire, et al, verified D-value did not vary with gamma and E-beam
 - Dose audit usually sufficient
 - A page of additional guidance
- Meant to simplify transfer between sites and modalities (i.e. gamma, E-beam, X-ray)

STERILITY ASSURANCE LEVELS - SAL

- What does 10⁻⁶ SAL mean?
- Is it necessary?
- Method 1 always provided the option for other SALs (10⁻³, 10⁻⁴, and 10⁻⁵)
- AAMI ST 67: 10⁻³ for non-compromised tissue and 10⁻⁶ for compromised tissue
 - FDA consensus standard
 - Difficult in Europe
- ISO 19930: Risk-based approach for SAL of product unable to withstand 10⁻⁶
- Main point
 - $_{\odot}\,$ Continue to be creative with your products
 - Design sterilization into those products
 - $_{\odot}\,$ Be open to other SALs if needed

METHOD SUITABILITY

- General term to describe demonstration that a test method is appropriate for a particular product
- Applicable to both bioburden and sterility
- Should be performed as a first step of bioburden/sterility testing of a product
- Demonstrate lack of inhibition in the test system
 - Newer requirement in bioburden standard (ISO 11737-1:2018)
 - Performed at Nelson for decades
 - > Spike extract fluid with *B. atrophaeus* and compare to control
 - Requirement in sterility standard for many years (ISO 11737-2:2019) as bacteriostasis/fungistasis (B/F)
- If inhibition is found, alter the conditions of the test

BIOBURDEN RECOVERY EFFICIENCY

- New AAMI TIR on understanding and interpreting bioburden data
- Chapter on recovery efficiency:
 - Is a recovery efficiency necessary for this product and situation?
 - $_{\circ}$ Is the recovery efficiency test method appropriate for this product?
 - $_{\odot}$ Are the recovery efficiency data acceptable for this product and situation?
- Is it necessary?
 - Recovery efficiency does <u>NOT</u> validate the acceptability of the data.
 - Recovery efficiency <u>DOES</u> help understand the accuracy of the data.
 - Some situations can support less accurate bioburden data
 - Comparing bioburden data of components over time
 - Bioburden data for overkill process (e.g. EO) with good, controlled manufacturing process

BIOBURDEN RECOVERY EFFICIENCY

• Is the test method appropriate?

EXTRACTION						
1	67	85	131	115	58	versus
2	40	68	86	97	25	
3	27	32	41	69	16	
4	5	2	9	23	0	

Looks pretty good

EXTRACTION	CFU COUNTS						
1	0	0	0	2	0		
2	0	0	0	0	0		
3	0	0	0	0	0		
4	0	0	0	0	0		

Should do inoculated product method

- Are the recovery efficiency data acceptable?
 - o 20% recovery efficiency might be okay for product that is difficult to extract with overkill sterilization cycle
 - 20% might not be okay for product that is radiation sterilized at a low dose (e.g. 15 kGy)

CHANGES TO INDUSTRY APPROACH FOR STERILIZATION

- Gamma radiation
 - 25-40 kGy has been "standard" dose for many years
 - > Corresponds to 1,000 CFU, which is "overkill" for many products
 - Considering validation of lower minimum doses
 - > 17.5 kGy carries maximum bioburden of 9 CFU
 - 20.0 kGy carries maximum bioburden of 45 CFU
 - > Must coordinate with irradiator first understand processing categories
 - Opening dose range to 25-45 or 25-50 kGy allows for greater availability in scheduling

CHANGES TO INDUSTRY APPROACH FOR STERILIZATION

- Ethylene oxide
 - Considering lower EO gas concentrations
 - Considering more optimized overkill cycles
 - Considering BI/bioburden or bioburden-based sterilization cycles
- Industry effort to develop alternative technologies to gamma and EO • Gamma and EO not going away, but open the door for other technologies

• Gamma process

• Electron beam

CONFIDENTIAL | © 2020 Nelson Laboratories, LLC | ALL RIGHTS RESERVED

• X-ray

- Dose uniformity ratio (DUR): an expression of radiation penetration typical examples
 - Gamma: ~1.6 (e.g. 25-40 kGy)
 - E-beam: ~2.0 (e.g. 25-50 kGy)
 - X-ray: ~1.6 (e.g. 25-40 kGy)
- Sterilization processing time
 - Gamma: ~3-6 hours
 - E-beam: ~30 minutes
 - X-ray: ~3-6 hours

- Sterilization format
 - Gamma and E-beam: un-palletize/sterilize/re-palletize
 - X-ray: sterilize in pallet form
- Simplicity/complexity
 - Gamma: Simple Cobalt 60 is always radioactive; just raise it or lower it into the pool
 - E-beam and X-ray: Complex electron excellerator
- "Safety"
 - Gamma: Cobalt 60 is always radioactive
 - E-beam and X-ray: can be unplugged
- Material compatibility
 - All very similar in most circumstances
 - Some products might see improvements with E-beam maybe

GAMMA, E-BEAM AND X-RAY; SUMMARY

- Industry is seeing move towards opening more E-beam and X-ray facilities
 - So far most are E-beam/X-ray combination systems
 - Intent is to increase capacity in gamma by moving applicable products to E-beam/X-ray
 - Nordion currently has contracts for manufacturing Cobalt 60 until the 2050s
- Most products can be sterilized with any of the three
 - If needed, some creativity can be implemented to allow for use
- Be mindful about not building too much overkill into sterilization processes
- Be mindful about the microbiology of your products and processes

STERILITY ASSURANCE

- What does it mean?
 - Assurance of sterility: qualitative concept comprising all activities that provide confidence that product is sterile
- Where does sterility assurance begin?
- What does it entail?
- For reusable products...
- For single-use products...
- Products with endotoxin requirements...

UNRELATED UPDATE: VAPORIZED HYDROGEN PEROXIDE

- ISO 22441 on validation of VH2O2 sterilization process
 - Largely follows the same approach as EO sterilization validations
 - Reached out to ISO TC 194 on biocompatibility to help establish hydrogen peroxide limits on product
- Separate document on VH2O2 sterilization equipment: EN 17180

THANK YOU

CONFIDENTIAL | © 2020 Nelson Laboratories, LLC | ALL RIGHTS RESERVED